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Abstract
Intelligent tutoring systems (ITS) aim to provide customized resources or feedback

on a subject (commonly known as domain in ITS) to students in real-time, emulating

the behavior of an actual teacher in a classroom. This thesis designs an ITS based on

an instructional strategy called example-based learning (EBL), that focuses primarily on

students devoting their time and cognitive capacity to studying worked-out examples so

that they can enhance their learning and apply it to similar graded problems or tasks.

A task is a graded problem or question that an ITS assigns to students (e.g. task T1

in C programming domain defined as “Write an assignment instruction in C that adds 2

integers”). A worked-out example refers to a complete solution of a problem or question in

the domain. Existing ITS systems such as NavEx and PADS, that use EBL to teach their

domain suffer from several limitations such as (1) methods used to extract knowledge from

given tasks and worked-out examples require highly trained experts and are not easily

applicable or extendable to other problem domains (e.g. Math), either due to use of

manual knowledge extraction methods (such as Item Objective Consistency (IOC)) or

highly complex automated methods (such as syntax tree generation) (2) recommended

worked-out examples are not customized for assigned tasks and therefore are ineffective

in improving student success rate.

This thesis proposes a new modular model for an EBL-based ITS called Example

Recommendation System (ERS). ERS extracts knowledge in terms of basic learning units

(LU) (e.g. scanf is a LU in the domain of C programming) from all task solutions and

worked-out examples in its domain by using regular expression analysis and represents

this knowledge in vector space. The prime contribution of knowledge extraction method

of ERS is its extendibility to new domains without requiring highly trained experts.

Experiments on two different domains show that LUs are extracted with 81% correctness

for domain 1 (Programming in C) and 95% for domain 2 (Programming in Miranda).

Knowledge extraction also serves as a crucial data pre-processing step for ERS, which

then uses the extracted knowledge to mine its repository of worked-out examples using

data mining methods such as k-nearest neighbors, in order to generate customized list

v
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of examples for each task in its domain. The accuracy of ERS’s customization model

is 93%, while its f_score is 88%. An evaluation of ERS demonstrates that the key

elements (simpler and efficient automated knowledge extraction, extendibility to other

domains, task-based customization, and clear integration of all components) have been

accomplished and the overall goal of optimizing learning has been achieved. Experiments

show that students score an average of 89% in tasks for which ERS recommends worked-

out examples, compared to an average of 73% for tasks that students attempt without

using any such examples.

Keywords: Data Mining, Intelligent tutoring system, student model, domain model,

example-based learning, task, worked-out examples, learning units, asymmetric

Boolean data, vector space model, similarity functions, feature extraction, clas-

sification, prediction, clustering
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Chapter 1

Introduction

This chapter is an introduction to Intelligent Tutoring Systems (ITS), its components

(especially domain and student models) and data mining techniques used in such systems.

It highlights the motivation behind designing an ITS driven by worked-out examples and

describes the main thesis contributions.

1.1 Intelligent Tutoring Systems

There are several diverse learning environments to teach a course in today’s techno-

logical world such as traditional in-class, distance learning, web-based online systems

and blended environments that combine classroom teaching and web-based technology.

According to Moore’s definition (Moore et al., 2011), distance learning is a form of in-

struction in which the instructor and learner need not be at the same place at any time

for the instructions to be delivered. Online learning is a newer version of distance learning

which uses technology (such as the web) and shows some transformation of an individ-

ual’s experience into the individual’s knowledge using different levels of interactivity. For

example, if student s1 has browsed a resource (such as a worked-out example on adding 2

fractions) n number of times (s1’s experience), then s1 is assumed to have mastered the

resource (s1’s knowledge). Examples of commonly used online learning environments are

Learning Management Systems (e.g. Blackboard (Windsor, 2014a)) used by University

of Windsor) and ITS (e.g. Wayang Outpost (Arroyo et al., 2003) that helps high school
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students prepare for standardized math tests). For an online learning environment to be

categorized as an ITS, it must satisfy the following requirements (Lukasenko, 2012):

1. learning environment must adapt to each student

2. it must use artificial intelligence and machine learning techniques to guide and coach

the student and

3. it must consist of four models:

(a) domain model that stores expert domain knowledge such as all correct answers

or solutions

(b) tutor model that emulates the role of a teacher in providing guidance and

assistance to students as and when necessary

(c) student model that stores a user model for each student’s information such as

his/her performance in the domain

(d) user interface module that acts as the front-end for students using the ITS

According to Brusilovsky et al. (2003), an ITS typically has 2 main functions :

1. adaptive presentation of learning materials : ITS present learning materials based

on student’s cognitive styles (e.g. inductive/deductive), their form of perception

(e.g. for a learner who prefers visual perception, the learning materials are pre-

sented as figures and graphs, as opposed to being presented as text), the level of

learning difficulty (e.g. a learner with low difficulty level will be presented with easy

questions) and their performance in domain knowledge (e.g. learners who achieve

more than 80% in the domain concepts covered so far will be assigned task T1,

whereas others will be assigned task T2).

2. intelligence based on objectives such as curriculum sequencing (e.g. each learner

gets a personalized lesson plan based on his/her performance), problem-solving

support (e.g. providing help to the learner while completing a task) and intelligent

solution analysis (e.g. identifying difficulty level of a task for a learner, calculating

the learner’s knowledge level on a domain concept).
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For an ITS to achieve this functionality, it requires to capture student data that defines

both their learning behavior (e.g. interaction with the ITS resources) and their knowledge

on the subject taught by the ITS (e.g. marks in a test or task). It also requires to store

and manage its domain resources efficiently.

1.2 Domain and Student Model

A domain model defines the expertise required to teach the domain (a subject is typically

called as a domain in ITS systems). In traditional classroom teaching, such expertise

comes from a combination of the teacher and the text book put together. ITS domain

model requires to store all basic concepts that experts (such as teachers) believe are

important for students to learn, and the resources required to learn these concepts. These

resources include lessons (in the form of lecture slides or videos) and their objectives,

worked-out examples for each lesson and gradable tasks / tests that students are assigned

so that their performance in the domain can be measured objectively. Domain model also

stores solutions to all such tasks and tests. A worked-out example (WE) in this thesis

(also referred to as example) is defined as a complete or partial worked-out solution

for a question or instruction (similar to examples in textbooks). Figure 1.1 shows a

sample worked-out example find_Area, which is essentially the solution to the following

instruction: “Write a program that computes and prints the area of a triangle, given its

base and height”. A task is defined as a question or problem on any topic or concept

in the domain. For example, task T1 in the domain of Programming in C is defined

as “T1: Write a C program to find the area of a rectangle”. A task solution is the

solution of the question asked in a task. Students are typically assigned tasks by the ITS

and are graded on them. This thesis uses the same structure to define a task solution

and a worked-out example. ITS domain experts are also required to define the level of

detail with which a resource in the ITS (such as a worked-out example) is represented.

Experts typically define learning units (LU) (also referred to as a topics or concepts) as

the finest level of detail for their domain’s resources. For example, “scanf”, which is a

command for entering values into variables from the keyboard, is an LU in the domain of

3



www.manaraa.com

Figure 1.1: Worked-out example find_Area as solution to the instruction ’Write a pro-
gram that computes and prints the area of a triangle, given its base and height’

C programming. Similarly, “fraction” is an LU in the domain of Math. The development

of domain model is a very tedious job, and requires the time and effort of several domain

experts. This thesis proposes automated methods to design and build domain models

that reduce the effort required of experts.

A student model (SM) is an approximate, partial, mainly qualitative representation

of the student’s knowledge about a specific domain (Lukasenko, 2012). The objectives

of an ITS dictate what comprises the student model and how it should be represented.

For example, an ITS which supports teaching strategies that are adaptive to a student’s

learning style will require each student’s SM to store his/her learning style. A SM can be

represented using various structures such as files, relational databases (RDB), ontology or

more function-specific network structures such as Bayesian networks (Lukasenko, 2012;

Wang & Beck, 2013). Student modeling is a process of storing student data and making

inferences about student’s characteristics, their learning behavior and abilities (Chrysafi-

adi & Virvou, 2013). Student data can be categorized as static or dynamic. Examples
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of static characteristics are name, gender, preferences (e.g. student prefers to use exam-

ples before attempting a quiz) and learning styles (e.g. student prefers a learning style

of collaboration or groups). Examples of dynamic student characteristics are cognitive

abilities (e.g. student’s understanding of a concept in the domain) and performance (e.g.

marks scored in tests). Design of a student model for an ITS is based on 2 objectives

: diagnostic (e.g. to predict student’s needs and adapt the learning materials accord-

ingly) and strategic (e.g. sequencing the course material based on students’ needs and

performance). The most common types of student models based on information stored

in it and objectives for which the student model is created are stereotype, overlay and

perturbation (SOMYUREK, 2009; Millan et al., 2010), as listed below.

1. Stereotype model creates groups of students based on their characteristics. For

example, when a student s1 logs in to the ITS for the first time, he/she is assigned

to one of the stereotype groups created by the designers of student model based on

s1’s learning style of ‘group work’.

2. Overlay model defines a student s1’s knowledge of the domain, typically represented

by marks (e.g. 56 out of 100) or by grades (e.g. Pass / Fail). For example, in a

scenario of an ITS that tutors adding fractions, a student s1 is asked to attempt

task TM1 defined as “Add 2 fractions 1
2 + 1

2 and show the result”. Student s1’s

answer to TM1 is 2
4 = 1

2 . The ITS then grades s1 (using its domain model) and

assigns s1 a grade of ’Fail’ for task T1 and stores it in s1’s student model.

3. Perturbation model not only stores a student s1’s knowledge but also the set of

mistakes s1 makes. For example, perturbation model for task TM1 (shown in (2))

stores s1’s mistake, in addition to the grade (e.g. Grade = ’Fail’; Mistake MM1 =

student s1 adds the denominators of the 2 fractions even when they have a common

denominator).

Student model used in this research for the domain of C Programming uses both a static

component (e.g. student name and id) and a dynamic component (e.g. student’s marks

in a task). It is an overlay model and is designed to customize learning resources (such as
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worked-out examples) to student’s needs (e.g. current task the student is assigned) and

to predict student success in given tasks.

1.3 Data Mining techniques

Data Mining is the process of discovering interesting and useful patterns and relationships

in large volumes of data. Data mining activities can be categorized as descriptive and

predictive. Descriptive data mining focuses on finding new and non-trivial patterns from

existing datasets, whereas predictive data mining uses some attributes of the existing

dataset to predict unseen values of other attributes of interest. For example, National

Basketball Association (NBA) uses data mining to analyze the movements of players to

help coaches plan their strategies. An analysis of the game played between the New

York Knicks and the Cleveland Cavaliers on January 6, 1995, revealed that when Mark

Price played the guard position, John Williams attempted four jump shots and made

each one (Encyclopedia.com, 2002). The process of data mining makes it possible for

coaches to design strategies at their fingertips, instead of spending hours looking at the

video footage to extract this piece of information. Similarly, an analysis of data collected

from grocery stores uses data mining to reveal an interesting pattern in their stores -

customers who buy diapers also buy beer (Pang-Ning et al., 2005). In both the above

examples, useful information is extracted from the general properties of existing data

using descriptive data mining. Association rule mining is one such descriptive mining

technique that extracts rules from existing data to define relationships among them (e.g.

Diapers -> Beer). Yet another descriptive mining method is clustering, that identifies

meaningful groups embedded in the existing data such that each group shares common

characteristics. For example, all tasks in a C programming course can be partitioned

into two clusters based on their difficulty level - cluster 1 consists of all tasks that are

easy, whereas cluster 2 holds all the difficult tasks. These clusters will be meaningful for

instructors when they assign tasks to students based on their capability. In predictive

data mining, the objective is to predict the value of a particular attribute (typically called

as target or class label attribute) based on the values of other existing attributes. For
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example, a data mining model can be built to predict whether a student registered in a

programming course is able to get an A grade or not, based on other attributes such as the

student’s age, demographics and previous grades. In this example, the target attribute

can be classified as 2 classes (grade=A / grade=notA). Such a predictive mining method,

where the target attribute is categorical, is known as classification. If the target attribute

is real-valued, then the predictive method is known as regression.

Like many other application areas, ITS also adapt data mining techniques to perform

functions such as automatically capturing student actions and making inferences on them

(Wu et al., 2008; SOMYUREK, 2009; Romero & Ventura, 2010; Chaturvedi & Ezeife,

2012). Decision trees, K-nearest neighbors and Bayesian Networks (BN) are the most

commonly used predictive mining methods in ITS systems (Romero & Ventura, 2010;

Chaturvedi & Ezeife, 2012). Chapter 2 describes some the data mining techniques used

in ITS and those that have been adapted by this thesis.

1.4 Example-based learning

Example-based learning (EBL) (Gog & Rummer, 2010; Renkl, 2014) is a well-known

teaching strategy in traditional educational systems. EBL focuses primarily on students

devoting their time and cognitive capacity to studying worked-out examples so that they

can enhance their learning and apply it to similar problems or tasks. Figure 1.1 shows a

worked-out example of a C program that finds the area of a triangle. Renkl (2014) states

that irrelevant cognitive load presented to students must be reduced to improve the

effectiveness of worked-out examples, so that students can devote their time and memory

capacity to successfully completing assigned tasks. Cognitive overload occurs when the

volume of information supplied to a student (e.g. extraneous material) exceeds his/her

processing capability (Mayer & Moreno, 2003) and therefore makes learning ineffective.

Following these principles, this thesis designs a framework for an EBL-based ITS that

presents to students, a concise list of only those worked-out examples that can help them

succeed in the assigned task.
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1.5 Motivation: Why EBL-based ITS?

There is no denying the fact that there is a shift in paradigm from in-class to web-based

online learning environments such as ITS. An ITS aims to provide one-on-one tutoring

in real-time to each and every student in a class, irrespective of the class size. Similar

to (human) teachers, ITS also adapts an instructional strategy such as example-based

learning to tutor the domain. Renkl (2014), Gog and Rummer (2010) demonstrate that

example-based learning strategy which promotes learning from worked-out examples is

very effective. In an ITS, worked-out examples are found to be useful to both students

and teachers - to students in their effort to succeed in assigned tasks or in their effort to

master a LU and improve their learning; to teachers in their effort to provide effective

teaching and achieve higher success rate in their course. Research on existing EBL-based

ITS (Yudelson & Brusilovsky, 2005; Li & Chen, 2009; Hosseini & Brusilovsky, 2013,

2014) has gone a long way in simulating the role of a teacher in many ways, but there are

still concerns about design of a formal framework that can extract features from domain

examples and tasks in terms of basic learning units, represent them in an efficient and

scalable manner and present a personalized list of examples to students.

1.6 Thesis Contributions

This thesis shows how domain and student data gathered from different aspects of an ITS

can be analyzed and mined to improve the overall learning experience. The main goal

of this thesis is to apply data mining methods for recommending course materials such

as worked-out examples to students to enhance their learning. Although existing EBL-

based ITS (Yudelson & Brusilovsky, 2005; Li & Chen, 2009; Hosseini & Brusilovsky, 2013,

2014) attempt to recommend worked-out examples to students, they suffer from serious

limitations (discussed in chapter 2 section 2.2 and chapter 3 section 3.2). This thesis builds

a framework for an EBL-based ITS called Example Recommendation System (ERS) which

is partially domain-independent and easily extendable to other domains. ERS builds and

manages a highly organized repository of worked-out examples to enable effective retrieval

of such examples customized for each task in the domain. Thus, this thesis, and published
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work originating from it (Chaturvedi & Ezeife, 2012, 2013, 2014, 2015b; Chaturvedi et al.,

2015c; Chaturvedi & Ezeife, 2015a) contribute to research in areas such as data mining

and intelligent tutoring systems. The main functional contributions are listed in section

1.6.1 and algorithms used to achieve these functionality are listed in section 1.6.2. Table

1.1 lists all algorithms proposed in this thesis and their description. Figure 1.2 presents

the map of all algorithms used in the design and evaluation of ERS.

1.6.1 Functional Contributions

The functionality that this thesis adds to existing systems include the following.

1. A simple, less resource-intensive and easily extendable automated method of knowl-

edge extraction (KE) is proposed, that extracts learning units (LU) from given

worked-out examples and task solutions using regular expression analysis. The pro-

posed method mitigates the need for highly trained experts with complex knowledge

on syntax trees (as is required by existing systems (discussed in chapter 2 section

2.2.2)). It also allows for each example / task solution to be represented uniformly

as n-feature vector of binary values (1 for presence of an LU in it / 0 for absence),

where n is the total number of LUs in the domain.

2. This thesis builds a knowledge customization (KC) module for ERS, that generates

a customized list of worked-out examples focused towards the tasks students are

assigned. Such a focused and concise list enables ERS to reduce cognitive overload

on students and help them succeed in tasks with a much higher likelihood.

3. All worked-out examples in the domain of ERS are organized into non-traditional

but coherent groups based on the LUs they contain. Such a list, generated by the

knowledge organization (KO) module of ERS, can be very useful to students when

preparing for final examination.

4. The proposed ERS (Example Recommendation System) framework clearly defines

and integrates the basic components (KE, KC and KO) required by any EBL-

based ITS system that aims to enhance student learning. Such modularity adds
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transparency between KE and other modules (KC and KO), thereby making ERS

domain-independent, once KE is executed.

5. In an attempt to evaluate ERS on selection of features from its student and domain

model, this thesis builds a highly accurate predictive mining model that predicts

student performance in an EBL-based ITS. Raw data from domain model and

student model is engineered carefully and transformed into meaningful features

that are task-focused and objective. This allows to evaluate ERS by answering

questions such as “What is the likelihood that students will succeed in assigned

tasks using the customized list of worked-out examples suggested by the ITS?”.

6. This thesis began its journey by mining student data in online courses to validate

that unsupervised instruments such as course assignments can also have a great

impact on the overall student performance. This enables teachers to take informed

decisions regarding their teaching strategy. For example, our study indicates that

allocating 30% to assignments has a greater impact on student learning and their

overall grades, as opposed to a high weight of 50% or low weight of 10%.

1.6.2 Procedural Contributions

The different procedural contributions proposed in this thesis to achieve the discussed

functionality are listed below.

1. To achieve functionality (1) and integrate it with (4), we build an algorithm called

KERE (Knowledge extraction using Regular expressions) that uses regular expres-

sion analysis to automatically extract LUs from task solutions and worked-out ex-

amples and store them as binary vectors of size n, where n is the total number of

LUs in the system.

2. We propose an algorithm MGREPD that mines all worked-out examples in ERS’s

domain to select those that are most relevant for each task in the domain. The

similarity function used in MGREPD is Jaccard’s coefficient (Jaccard, 1901), which
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caters best to the asymmetric binary vectors generated by KERE. This algorithm

is used to achieve functionality (2) and (4).

3. This thesis introduces a novel algorithm called findDL that computes the expected

difficulty level (DL) of any task or worked-out example in the domain, after KERE

has broken them down into individual LUs. DL is then used to validate MGREPD.

DL is also used as a significant feature in functionality 6. In the absence of such an

algorithm, ITS domain experts are required to manually assign a DL to each task

and worked-out example. Thus, having an algorithm compute the DL significantly

reduces the efforts required by the ITS domain experts. Algorithm findDL is also

used to achieve functionality (2).

4. To achieve functionality (3) and (4), the thesis proposes an algorithm called KOM16

that modifies two important steps of the standard k-means clustering algorithm

for any dataset that is binary and asymmetric. First, it makes a neighborhood-

sensitive choice of initial centroids (instead of picking them randomly, as done in

standard k-means). Secondly, it recomputes its centroids using a new technique

that is sensitive to the presence of LUs, both locally (in the cluster) and globally

(in the entire dataset).

5. To achieve functionality (5), this thesis builds a highly accurate data mining model

called PSP (Predicting Student Performance) to predict student performance in

assigned tasks as a measure of evaluating ERS’s student and domain model features

that are carefully engineered to be task-focused and objective.

6. We propose an algorithm called MineLearning that mines the impact of unsuper-

vised course instruments such as assignments on student performance using as-

sociation rule mining. Taking this study a step further, we also proposed and

implemented an algorithm called MBER (Mining Binary data Efficiently using Re-

duced AND operation) that mines Boolean data using matrix algebra. These two

algorithms were used to achieve functionality (6).
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Algorithm Name Description Algorithm number
KERE Knowledge extraction using

regular expressions
2

KOM16 Modified steps 1 and 2.2 of
k-means - main

3

create_initial_centroids Modified step 1 of k-means 4
recompute_centroids Modified step 2.2 of K_means 5
GREPD Generate Relevant Examples

and Predict Difficulty of a task
6

findDL Compute actual class label
(difficulty level E/D of

examples)

7

MGREPD Modified algorithm to Generate
Relevant Examples and Predict

Difficulty of a task

8

ERS_main Main algorithm of the proposed
ERS system

9

MBER Mining Boolean data using
reduced AND operations

(Chaturvedi & Ezeife,
2015a)

GSE Grade in the suggested example 10

Table 1.1: List of algorithms proposed by this thesis

Figure 1.2: Map of all algorithms used for the design and evaluation of ERS
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1.7 Thesis Outline

Figure 1.3 presents the layout and flow of chapters 1 to 8 of this thesis. Chapter 2

presents the background required to achieve the functionality of this thesis. It discusses

the data mining methods that are applicable to ITS systems. It also presents a survey

of the existing ITS systems that use EBL instructional strategy. Chapter 3 presents

the problems we identify in the existing systems, leading to the motivation behind this

research and our thesis statement. It also gives all definitions used in the thesis and

the scope of the proposed ITS. Chapter 4 describes the proposed system and defines all

components and algorithms proposed to achieve ERS’s functionality. Chapters 5, 6 and

7 evaluate ERS in different ways - chapter 5 evaluates the different components of ERS,

chapter 6 evaluates ERS as a tutor and Chapter 7 evaluates ERS using its domain and

student model features. Chapter 8 presents the conclusions, limitations and future works

emerging from this thesis.

13



www.manaraa.com

InIntroduction

Background and Related Works

Data Mining
Techniques

Example-based 
Learning

Intelligent Tutoring 
System

Dissertation Approach

Example Recommendation System

Knowledge 
Extraction

Problem Definition  and 
Proposed Architecture

Chapter 1

Chapter 2

Chapter 3
Chapter 4

Knowledge 
Customization

Knowledge 
Organization

Evaluation of ERS

Evaluating Individual 
Components of ERS

Evaluating ERS as a 
tutor

Evaluating student and 
domain features of ERS

Chapter 5

Chapter 8

Chapter 6 Chapter 7

Introduction

Intelligent Tutoring System and Data Mining Techniques

Conclusions, Limitations and Future Works 

Figure 1.3: Thesis Layout

14



www.manaraa.com

Chapter 2

Background and Related Works

Section 2.1 of this chapter discusses the data mining techniques that are typically imple-

mented in ITS (e.g. clustering and classification). Section 2.2 elaborates on the existing

ITS that are based on Example-based learning (EBL) teaching methodology, highlight-

ing the limitations that these systems suffer. Section 2.3 discusses the general evaluation

methods used in ITS systems and the challenges ITS face when it comes to small student

datasets.

2.1 Data Mining Techniques applicable to ITS

The advent of web-based courses has seen a tremendous increase in electronic datasets

generated from student and teacher activities and various aspects of course design. Ed-

ucational data mining (EDM) is a field that exploits various statistical and data-mining

techniques over different types of educational datasets (Romero & Ventura, 2010). The

objective of using these techniques is to analyze such data in order to resolve issues such

as course curriculum sequencing, course instruments that impact student’s learning and

performance, learning strategies that suit a student’s personality and other such issues.

Section 1.3 of chapter 1 describes data mining as the process of discovering interesting

and useful patterns and relationships in large volumes of data. It also categorizes mining

activities into descriptive and predictive. Descriptive data mining focuses on finding new

and non-trivial patterns from existing datasets, whereas predictive data mining uses some
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attributes of the existing dataset to predict unseen values of other attributes of interest.

The descriptive and predictive mining techniques commonly used in EBL-based ITS and

applicable to ERS are described next in sections 2.1.1, 2.1.2 and 2.1.3.

2.1.1 Clustering

Clustering is an unsupervised mining method that partitions a finite set of data samples

in multidimensional space into well-defined and separate clusters using distance measures

such as Euclidean distance so that (1) data samples belonging to the same cluster are

similar (intra-cluster) and (2) data samples belonging to different clusters are dissimilar

(inter-cluster). For example, in an educational dataset, students can be grouped into

two or more clusters according to their learning styles. A simple and effective clustering

algorithm called k-means (Pang-Ning et al., 2005) is described next.

K-means

K-means algorithm (Pang-Ning et al., 2005) takes as input an integer value k (where k =

number of desired clusters) and n data samples, where each sample has m attributes (e.g.

each worked-out example in the domain of C programming is a data sample that consists

of m learning units as its attributes). It then groups its samples into k clusters (where each

cluster consists of one or more data samples) such that the inter-cluster similarity of the

resulting clusters is low, whereas the intra-cluster similarity is high. Each group or cluster

has a representative point known as its centroid or center. Intra-cluster similarity defines

how close the samples within a cluster are to each other, whereas inter-cluster similarity

defines how well-separated the cluster centroids are from each other. A similarity or

distance function (similarity is considered to be the inverse of distance) is used to find

the closeness between a sample x and cluster centroid c or between 2 cluster centroids.

For example, Euclidean distance between sample x and cluster center ci is defined as

d(x, ci)=
√

(x1−ci1)2 + (x2−ci2)2..+ (xm−cim)2 , where m = number of attributes in a

sample. Algorithm 1 shows the main steps of k-means algorithm and is explained further

using example 1.
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Algorithm 1 K-means algorithm (Pang-Ning et al., 2005)
Input: dataset of size n X m (n samples, each with m attributes), k (number of clusters),
maxIterations (threshold for maximum number of iterations)
Output: k clusters
Method
*** begin of k-means
1. Choose k samples as initial centroids
2. repeat until convergence (centroids not not change or maximum number of iterations
has been reached)

2.1. repeat steps until all n samples are exhausted
2.1.1. assign sample x to its closest centroid using an appropriate distance function
2.2. recompute the centroid of each cluster based on assignment in steps 2.1

*** end of k-means

Example 1: Use k-means clustering to group a sample data of 4 students (A,B,C,D)

with their height and weight as attributes into k=2 clusters.

Input: k=2 and a dataset S of 4 students given their height and weight.

sample data S =

Height Weight

A 1 1

B 2 1

C 4 3

D 5 4

Output: Dataset S organized into 2 clusters.

Solution: K-means starts by randomly picking 2 samples as initial cluster centers. For

example, c1 = A = (1,1); center c2 = B = (2,1).

It then assigns samples to their closest cluster center based on its distance to the center.

Euclidean distance between each sample and cluster centers c1 and c2 is calculated and

stored in a matrix M1(for iteration 1). For example, distance between data sample C

(4,3) and center c2 (2,1) is calculated as
√

((4− 2)2 + (3− 1)2= 2.83.

M1=

c1 0 1 3.61 5

c2 1 0 2.83 4.24

A B C D
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Now, each sample is assigned to the center to which it has the shortest distance =>

A ∈ c1, B ∈ c2, C ∈ c2, D ∈ c2.

Next, k-means finds new cluster centers by finding the arithmetic mean of existing

clusters. c1 has 1 sample with attributes (1,1) => new mean for cluster 1 = (1,1); c2

has 3 samples in it; B(2,1), C(4,3) and D(5,4) => new mean for cluster c2 is ((2+4+5)

/ 3, (1+3+4) / 3)) = (11/3, 8/3). Therefore, the new centers are c1 = (1,1) and c2 =

(11 / 3, 8 / 3). The above method is repeated until convergence. So samples are again

compared with these new cluster centers and are (re)assigned to those clusters for which

their distance is minimum. In this example, the euclidean distance between each sample

A,B,C,D and these new cluster centers is calculated and stored in a matrix M2

(iteration 2).

M2=

c1 0 1 3.61 5

c2 3.14 2.36 0.47 1.89

A B C D

Once again, each sample is assigned to the center to which it has the shortest dis-

tance => A ∈ c1, B ∈ c1, C ∈ c2, D ∈ c2.

Repeating this for the next iteration : c1 has 2 elements A(1,1) and B(2,1) =>mean

for c1= ((1+2)/2,(1+1)/2) = (3/2,1); c2 has 2 elements C(4,3) and D(5,4) => mean for

c2 is ((4+5)/2, (3+4)/2) = (9/2, 7/2). With these new centers, distances are calculated

and stored in M3

M3=

c1 0.5 0.5 3.2 4.6

c2 4.3 3.54 0.71 0.71

A B C D

Assigning each sample to the closest center (A ∈ c1, B ∈ c1, C ∈ c2, D ∈ c2), it is

found that this assignment is the same as cluster assignment in iteration 2. So the

algorithm stops. The output for this example is (A ∈ c1, B ∈ c1, C ∈ c2, D ∈ c2). New

data can then be tested by keeping the centers fixed.

Limitation of using k-means clustering algorithm is that it is sensitive to initialization

parameter k, to the initial set of centers picked and to the presence of noise or outliers. Our
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proposed algorithm that uses clustering to organize its worked-out examples (discussed

in Chapter 4) mitigates some of these issues.

2.1.2 Classification / Prediction

Given dataset of samples, each represented as a tuple (x,y) where x = (x1, x2, ..xn),

classification is the task of building a learning model that maps the attribute set x into

attribute y, where y is termed as its class label (or target attribute). In general, data

is divided into 2 subsets: training and test. Training dataset is used to build/learn the

model, whereas test dataset is used to test it. First the model is built by applying a

classification/learning algorithm (such as k-nearest neighbors as explained next) on the

training dataset. Next, the model is applied to test dataset and their actual class labels

are compared to the predicted ones to evaluate the model. Thereafter, this model can be

used to classify unseen records.

2.1.2.1 K-Nearest Neighbors

K-nearest-neighbor (k-nn) classifier takes 4 inputs in order to predict a test sample’s

target attribute. The inputs are (1) an integer k (k=number of neighbors), (2) set of

training samples whose class label y is known (e.g. set of p worked-out examples, given

y = difficulty level of each example in p), (3) test sample t (e.g. t = worked-out example

p+1), and (4) similarity or distance function (e.g. Euclidean distance). It then predicts

test sample t’s class label by performing the following steps :

a. calculate similarity between the test sample t and all training samples using

the chosen similarity function

b. sort these similarity values and pick the top k samples – these are the k nearest

neighbors of test sample t

c. determine the class label of each of the k nearest neighbors
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Figure 2.1: Difficulty level of task T8 using k=5 nearest neighbors is predicted as D
(difficult)

d. find the class label that gets the majority votes among its neighbors (majority

implies that the number of neighbors with this class label is more than any

other class label) and assign it as the class label of test sample t.

For example, if inputs to k-nn are (1) k = 5, (2) training dataset = m worked-out

examples, each example ei represented as (x,y) where x = (x1, x2, ..xn), n = total number

of LUs, each xi is a learning unit of ei, class label y for each ei is its difficulty level (class

label = E for easy and D for difficult), (3) test sample t = task T8 as shown in figure 2.1

and (4) chosen similarity function = Jaccard’s coefficient of similarity(Pang-Ning et al.,

2005). The k-nn algorithm first finds the 5 nearest neighbors of test sample T8 and then

predicts T8’s class label of to be D (difficult) because majority of its neighbors (4 out of

5) from the training set have a class label (difficulty level) = D.

2.1.2.2 Decision Trees

Decision Tree (DT) solves a classification problem by asking a set of carefully framed

questions about the attributes in a data sample t. Each question leads to a follow-up

question until a conclusion can be made on t’s class label. A tree structure (DT) is used

to organize these questions and their answers - each step partitions the data based on
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a question asked on a chosen attribute. DT is a supervised classification method that

uses a greedy strategy to grow a tree by making locally optimum decisions about which

attribute to use to partition data. Hunt’s algorithm (Pang-Ning et al., 2005; Markov &

Larose, 2007), the basis of some well known DT methods such as ID3, C4.5 and CART

creates a DT recursively . Assume that a node t in the tree is associated with a set

of training records Dt and (y1,.. yc) are their class labels, Hunt’s algorithm does the

following: (1) If all records in Dt belong to the same class yc, then a leaf node is created

labeled as yc (2) If Dt belongs to more than one class, then an attribute α is selected

such that it gives the best split and a test condition on α is used to partition the records

in Dt to smaller subsets. Each record of Dt will now belong to one of the child nodes

created for each outcome of α’s test condition. This is then repeated recursively for each

child node. To justify that an attribute α gives the best split, different measures such as

Gini index, entropy and classification error rate can be applied to attributes so that the

selection gives the best split of records - the lower the measure, the better is the split.

For example, attribute α that gives the lowest Gini index is the one that gets picked and

the test conditions for the current node are then applied on α. The measures are defined

as :

Entropy(t) = -
∑m−1

i=0 pi log2pi

Gini(t) = 1 -
∑m−1

i=0 pi
2

Classification error(t) = 1 - maxi[pi]

Using any one of these measures (e.g. Gini index), the steps to create a decision tree

are:

1. Find the gini index of each attribute of sample S.

2. The attribute with minimum gini index is selected as the root (α).

3. Attribute α has β number of distinct values. So root node α will have β branches

coming out of it. A reduced set of samples will be now tested for each of the β branches

and the gini index of each attribute except α is calculated to find the next attribute that

gives the best split. This process is repeated until all samples for a given node belong to

the same class or there are no samples for branch β, which is when a leaf node is created

with a class label .
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4. Decision rules are generated using the tree - all branches in a path from the root

to the node prior to the leaf are considered as antecedents of the rule (separated by a

condition) and the leaf (with class label) is considered to be the consequent.

Example 2: Use decision trees to predict the class label of a dataset S

Input : Dataset S with 2 attributes a1 and a2 and a class label attribute Class.

Let S =

a1 a2 Class

1 T T G1

2 T T G1

3 T F G2

4 F F G1

5 F T G2

6 F T G2

7 F F G2

8 T F G1

9 F T G2

Output : classify a data row into its class label (G1 or G2)

Solution:

In this example, m=2 as attribute Class has 2 labels G1 and G2.

First, an attribute is selected for the root node, say G1. But this tree needs to

be modified as the root contains records from both classes G1 and G2. To select an

attribute, we use the Gini index to find the best split.

For attribute a1, Gini index = 4
9 [1 - (3/4)2- (1/4)2] + 5

9 [1 - (1/5)2- (4/5)2] = 0.3444

For attribute a2, Gini index = 5
9 [1 - (2/5)2- (3/5)2] + 4

9 [1 - (2/4)2- (2/4)2] = 0.4889
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Figure 2.2: Decision tree generated for example 2 of section 2.1.2.2

Since attribute a1 is smaller, it gives a better split. So the root is a1. Leaf nodes with

class label are shown in red.

Some decision rules generated from this tree are:

if attribute a1= T and attribute a2= T then classification = G1;

if attribute a1= F and attribute a2= T then classification = G2;

So an input record such as (F, T) will be classified as G2, according to this decision

tree.

Decision tree algorithm such as ID3 (Quinlan, 2014) are not able to handle continuous

attributes such as temperature. C4.5 (Quinlan, 2014), an improvement of ID3, is able to

handle such attributes. Both ID3 and C4.5 use entropy and information gain as measures

to select an attribute for a node. CART (Classification and Regression trees) method is

a restricted version of ID3 and C4.5 because it allows only binary splits. ID3 and C4.5

also allow attributes to have multi-ways splits (e.g. an attribute can have 3 outcomes,

’True’, ’False’ and ’Maybe’) . Unlike Id3 and C4.5, CART uses the gini index.
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2.1.3 Frequent Pattern Mining

Frequent patterns (Han & Kamber, 2000; Han et al., 2004) are itemsets or subsequences

that appear in a data set with frequency no less than a user-specified threshold. For

example, a set of items, such as coffee and cream that appear frequently together in a

transaction data set is a frequent itemset. A subsequence, such as buying a PC is followed

by buying a printer, is a (frequent) sequential pattern if it occurs frequently in the shop-

ping cart history. Finding frequent patterns plays an essential role in mining associations

and many other interesting relationships among data. The most common form of pattern

discovery in an unsupervised machine learning system is the discovery of association rules

such as (if coffee, then cream, written more commonly as coffee => cream). Usefulness

of such rules is measured by calculating their support and confidence. Support of a rule

is a measure of how often that rule applies in the dataset. For example, a rule R1: "As-

signment > 85" ⇒"Total > 85" has a support of 5% means that “Assignment>85” and

“Total>85” exist together in 5% of all the transactions being analyzed. Confidence of a

rule is a measure of how often that rule is correct. For example, rule R1 has a confidence

of 80% means that 80% of transactions in the dataset that contain “Assignment>85”

also contain “Total>85”. The Apriori algorithm proposed by Agarwal Srikant (1994) for

mining frequent itemsets is based on a property which states that all non empty subsets

of a frequent itemset must also be frequent (Apriori property). Each transaction in the

database that is input to the Apriori algorithm consists of several attributes (items) ;

a set of items is called an itemset. The problem of finding itemsets that are frequent

is considered to be a non-trivial problem because the potential number of such frequent

itemsets is exponential to the number of items in the database. Apriori algorithm scans

the database several times (depending on the size of the largest frequent itemset) and

therefore, is computationally expensive. Several variations to this algorithm intending to

make it more efficient and scalable exist and are presented next.
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itemset support
{a} 3
{b} 4
{c} 3
{d} 1

Table 2.1: Output of 1st iteration of Apriori - candidate 1-itemset and their support

itemset support
{a,b} 3
{a,c} 2
{b,c} 3

Table 2.2: Output of 2nd iteration of Apriori - candidate 2-itemsets and their support

2.1.3.1 Apriori And Its Variations

Apriori algorithm works in two phases. The first phase discovers the itemsets that are

frequent (called large itemsets). By frequent, it means that they have occurred together

more than given minimum support number of times.

Example 3: Given a transaction dataset D with four tuples

{(Tid1: ab);(Tid2:abcd);(Tid3:abc);(Tid4:bc)} and a minimum support of 75% or 3 trans-

actions (indicating that if an itemset i appears in at least 3 transactions, then i is frequent),

find all large itemsets (L) or frequent patterns (FP) using Apriori algorithm.

Input : D = {(Tid1: ab);(Tid2:abcd);(Tid3:abc);(Tid4:bc)}, min_support = 3

Output : Large itemsets

Solution:

Step 1: Find itemsets of size 1 and their support count. These are known as candidate

1-itemsets.

Since itemset {d} has a support count <3, it is not a large 1-itemset => Large or

frequent 1-itemsets are {{a}, {b}, {c}}.

Step 2: Next, generate a list of all pairs of the frequent 1-itemsets. This is the

candidate 2-itemset.
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itemset support
{a,b,c} 2

Table 2.3: Output of 3rd iteration of Apriori - candidate 3-itemsets and their support

Itemsets {a,b} and {b,c} have a support count >=3 and satisfy the Apriori property.

Therefore, Large or frequent 2-itemsets are {{a,b}, {b,c}}.

Step 3: Similar to step 2, generate a list of all triplets by joining frequent 2-itemsets.

This is the candidate 3-itemset.

None of the itemsets in table 2.3 have a support count of 3 or more. This implies that

large 3-itemset is empty.

Therefore, the frequent itemsets generated by Apriori are {{a,b}, {b,c}}. Now, as-

sociation rules can be generated from all frequent itemsets and only strong rules with

confidence greater than or equal to a given minimum confidence are kept. Confidence is

calculated as cardinality of the rule/cardinality of the left side of the rule. If the given

confidence is 80%, example rules that can be generated R1: a -> b (confidence 3/3 =

100%); R2:b -> a (confidence 3/3 = 100%).

Variations of Apriori

To overcome issues with Apriori, such as multiple database scans and multiple joins, sev-

eral variations were proposed such as hash-based (Park et al., 2005), tree_based (Sarkar

et al., 2012), partition-based (Li et al., 2001; Chai et al., 2007), sampling-based, hierarchy

(is-a)-based apriori (Han & Kamber, 2000) and others (Yu et al., 2008; Wang & Xiangwei,

2011).

2.2 Example-based ITS

There exist several ITS that revolve their teaching strategies around worked-out examples

but they suffer from several limitations. Section 2.2.1 presents these systems as a tax-

onomy. Sections 2.2.2 and 2.2.3 list the main characteristics of some existing EBL-based

ITS that are designed for programming and non-programming domains.
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2.2.1 Taxonomy of Example-based ITS

This study surveys the existing ITS that are solely based on the theory of example-based

learning to conclude that they differ from each other in at least the following ways:

1. Expertise required to create the domain model.

2. Granularity of the domain used. Granularity refers to the smallest level of detail

that a domain component such as a worked-out example or task is divided into.

For example, “Lesson ⊇ Examples” is a course-grained system, interpreted as “each

lesson consists of examples (that are treated as the smallest atomic units that cannot

be further subdivided)”. On the contrary, “Lesson ⊇ Examples ⊇ Learning Units or

concepts” is a fine-grained system interpreted as “each lesson consists of examples,

which are further subdivided into small indivisible concepts” (e.g. L1 consists of

example E1, which has concepts {datatype, printf}).

3. Extraction of the smallest unit of granularity (SUG) (called as learning units in this

thesis).

4. Data structures used to store the domain’s SUG.

5. Organizing resources (such as worked-out examples).

6. Customizing resources (such as worked-out examples) based on gradable tasks stu-

dents are assigned or need help in.

7. Customizing resources (such as worked-out examples) according to student perfor-

mance.

Based on these criteria, tables 2.4, 2.5 and 2.6 show a tabular taxonomy of the existing

ITS that use example-based learning theory of pedagogy. Most of the existing systems

use a programming domain, although there are some that are designed for domains such

as Math and Physics. Sections 2.2.2 and 2.2.3 discuss such systems in detail and their

limitations. 1

1The existing systems in this thesis are not necessarily fully functional ITS - they are mostly value-
added services to existing systems. Nevertheless, they are relevant to my research as they are EBL-based.
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2.2.2 Example-based ITS for Programming Domain

Research has shown that Example-based learning is an effective teaching method (Van-

Lehn, 1998; Gog & Rummer, 2010; Renkl, 2014). One of the earliest ITS systems in

the domain of programming that used examples for effective learning was developed by

Burows and Weber (1996) 2. Their domain model consists of all examples in the example

database that are pre-analyzed and stored as syntax trees. These trees store concepts and

sub-concepts that occur in the solution as interior nodes and leaves as constant values.

When a student s1 asks for an example while working on a task, the authors compare

the syntax trees of the task that is currently assigned to the student with that of each

example. The best example that matches the task tree is then presented to the student.

The authors use 3 features to match the entries in a task with that of an example :

concept/sub-concept similarity, syntactic similarity and organizational similarity. When

a concept/sub-concept of a task is matched to that of an example, the highest matching

value is given to a perfect match (e.g. float as the return value in the task and float as

return value in the example) ; a lower value is given to a match that is generic (e.g. int as

a return value in the task and float as the return value in the example is a generic match)

and the lowest is given when there is no match. Syntactic similarity is measured by the

number of arguments that the concept/sub-concepts in the task and the example use - if

they are same, a higher matching value is assigned to it. Organizational or hierarchical

similarity is measured by the placement of a concept/sub-concept in the syntax tree. A

concept placed high in the tree is a strong indication of the importance of the concept.

Therefore, the higher a concept is in this tree, the higher is its similarity value.

Weber and Brusilovsky (2001) used a similar approach to develop an ITS called ELM-

ART to teach the programming language LISP. The domain model of ELM-ART consists

of each task solution stored as a syntax tree. ELM-ART compares the syntax trees

of student solutions with task solutions, in order to assist students in solving a task.

Weber and Brusilovsky (2001) proposed yet another web-based teaching and learning tool

called WebEx to support learning from examples. WebEx was created for a course on
2The existing systems in this thesis are not necessarily fully functional ITS - they are mostly value-

added services to existing systems. Nevertheless, they are relevant to my research as they are EBL-based.
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’Data Structures and Programming Principles’ and was used for interactive exploration

of programming examples in language C in an adaptive way. The idea was to avoid

overloading students with detailed explanations for each line of the example’s code and

allow them to see these explanations of the code at their own pace. Student feedback of

the WebEx system motivated the authors to design an improved system called NavEx

(Yudelson & Brusilovsky, 2005) that provided adaptive navigation support and personal

guidance to students. Although NavEx is similar to WebEx in its emphasis on the

importance of using examples when teaching programming courses, it allows for more

personalized support by adapting examples and explanations to student’s current level of

knowledge. NavEx’s domain model consists of all example solutions represented as syntax

trees and the sequence in which lessons are taught. All examples are grouped according

to lessons to which they belong. NavEx extracts the basic concepts of each example using

syntax trees (similar to ELM-ART and WebEx) and uses them to automatically derive

the learning goals of each lesson. Each lesson requires a set of prerequisite concepts to

achieve its learning goal, represented by a set of outcome concepts. For example, domain

model of NavEx specifies that lesson 1 (L1) has 3 examples E1, E, E3 and lesson 2 (L2) has

3 examples E4, E5, E6. Concepts extracted for these examples as given in small brackets

are E1 (C1), E2 (C1, C2), E3 (C1, C2), E4 (C1, C2, C4, C6), E5 (C1, C2, C4) and E6

(C1, C4). Lesson L1 has no prerequisites since it is the first lesson. But it has an outcome

of (C1, C2), since by the end of lesson 1, students must have seen examples E1, E2 and

E3 and therefore must have learnt these concepts. C1 and C2 are now prerequisites to

lesson L2 and after browsing examples E4, E5 and E6 of L2, its outcome concepts are C4

and C6. NavEx uses a d-dimensional vector of Boolean values (’known’ / ’not known’)

to store student’s knowledge on each concept ci(i=1..d), where d is the total number of

concepts in the domain. It then simply matches the student’s knowledge on an example’s

prerequisite concepts to decide if this example should be presented to the student or not

(e.g. if student s has finished lesson1, then values of C1 and C2 for s are set to ’known’.

Therefore, s can be presented with examples E4, E5 and E6). A value of ’unknown’ for a

concept ci for student s is changed to ’known’ if s has clicked on an example with concept

ci enough number of times, decided by a threshold value computed as : threshold =
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0.8∗(all−concepts−prereq−concepts)/all−concepts∗total−number−of−clicks−possible,

where total−number−of−clicks−possible is a value given by an expert. For example,

all−concepts for E5 of lesson L2 is {C1, C2, C4}, mastered concepts for E5 are (C1, C2)

and the total−number−of−clicks−possible for this example (given by expert) is 10. So the

threshold is 0.8 * (1/3) * 10 = 2.6 => the student has to make at least 3 clicks to master

this example. Once this threshold is reached, the system concludes that the student has

mastered example E5 and hence the student model can be updated accordingly.

Li and Chen (2009) 3use decision trees to select programming exercises to suit the

student’s knowledge level - the authors call it as the student’s zone of proximal develop-

ment (ZPD). Their system offers challenge and assistance to the students by offering a

personalized assistance dispatching system (PADS) to select exercises based on the diffi-

culty level of the exercise and on student’s current knowledge. PADS extracts concepts

covered by each exercise using a manual method called IOC (Rovinelli & Hambleton,

1976), in which nine experts gave their opinion of whether or not a concept should belong

to an exercise. Then, an index value is calculated for each concept i in exercise k as

Iik =
(n− 1)

∑q
j=1Xijk + n

∑q
j=1Xijk −

∑q
j=1Xijk

2(n− 1)q (2.1)

where n = total number of LUs, q = total number of experts and Xijk= the rating (1, 0,

-1) of concept i on exercise k by expert j. An index value Iik > 0.8 indicates that concept

i is required by exercise k, a value between 0.5 and 0.8 indicates that i is a sub-concept

of k and value of < 0.5 indicates that i is not a concept of j. PADS stores student’s

proficiency in each extracted concept in its student model and uses it to derive fours of

its features used in the decision tree model. Two other features are manually given by

experts. Feature f7 is captured from the weblogs. The seven feature attributes PADS

uses are student’s proficiency level in the main concept (f1), student’s proficiency level

in the sub-concepts (f2), complexity level of the algorithm (f3), number of lines in the

code for completing the exercise (f4), student’s proficiency level in algorithm analysis (f5),

student’s grade in the last assignment (f6) and the number of logins and time spent on
3The existing systems in this thesis are not necessarily fully functional ITS - they are mostly value-

added services to existing systems. Nevertheless, they are relevant to my research as they are EBL-based.
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Figure 2.3: Example decision tree generated by PADS (Li & Chen, 2009)

the logins in the last two weeks (f7). To train the model, the target variable selected is

difficulty level of an exercise. It is measured by using expert knowledge (on parameters

such as the operators used in the exercise, and number of steps required to solve it) and

by student feedback on the exercise. At the end of each exercise, students are asked to

answer a question : How did you complete this exercise? The choices given to the students

were: 1) I completed this exercise without assistance 2) I completed it with assistance

of related materials 3) I completed it with peer collaboration 4) I couldn’t complete it.

If the answer is either a 1 or a 4, then the target variable is set to 0; otherwise it is set

to 1 (=>appropriate difficulty level) . Once trained, this model is used to predict the

target t ( difficulty level of the exercise) for future students. For example, let S be a

sample dataset with 10 tuples and 8 attributes - 7 feature attributes (f1-f7) and 1 target

attribute t as shown in the root of figure 2.3. Now if a new student s has the following 7

feature attributes (2 2 2 1 1 1 2) for exercise ei, then it is predicted by rule R2 that ei is

not at an appropriate difficulty level for s.
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Mokbel et al. (2013) also use syntax trees to extract concepts from worked-out ex-

ample solutions. They then divide their solution’s syntax trees into sub-graphs using

spectral clustering and then measure the proximity between solution parts using TFIDF

weights. Hosseini and Brusilovsky (2013), in an attempt to create an indexing tool called

JavaParser for Java problems, use the same method of syntax trees used by ELM-ART

(Weber & Brusilovsky, 2001) and NavEx (Yudelson & Brusilovsky, 2005) to extract con-

cepts from the given example solutions. After extracting the concepts, their system finds

sequence of problems that can assist students to fill gaps in their knowledge, especially

when preparing for final examination. Hosseini and Brusilovsky (2014) ??, also propose

to analyze concepts extracted from a domain’s learning content in an effort to find similar

problems or examples by comparing their syntax trees using measures such as tree edit

distance (Zhang & Shasha, 1989).

Limitations

After doing a systematic literature survey of existing ITS, this thesis divides the en-

tire process of designing an ITS that is based on EBL teaching method into different

phases such as knowledge extraction (KE), knowledge organization (KO) and knowledge

customization (KC). Knowledge extraction (KE) is defined as a process that extracts

knowledge from given inputs (e.g. extract learning units (LUs) from given C programs).

Knowledge extraction in many of the systems such as ELM-ART (Weber & Brusilovsky,

2001), NavEx (Yudelson & Brusilovsky, 2005) and JavaParser (Hosseini & Brusilovsky,

2013, 2014) is done using syntax trees. This entails a complex expert knowledge using

complex automated methods such as parser and syntax tree generation that is not eas-

ily defined or maintained, nor can it be applied or extended to other subject domains.

Other systems such as PADS (Li & Chen, 2009) use a manual method (IOC) of ex-

traction. This study defines knowledge customization (KC) as a process that generates

resources customized to the needs of students using the ITS. A limitation of customiza-

tion in the existing systems is that although they recommend examples to students, this

recommendation is more often independent of any task that they are assigned. Such a

list is not focused and may cause cognitive overload. Knowledge Organization (KO) is
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a process that enables ITS to present its resources (such as worked-out examples) in an

organized way so that it helps students use these resources effectively. NavEx (Yudelson

& Brusilovsky, 2005) organizes all its examples into the lessons to which they belong.

JavaParser (Hosseini & Brusilovsky, 2013, 2014) attempts to develop an automatic in-

dexing tool for Java problems, indexed on concepts, but still uses syntax trees to store

the knowledge. PADS does not present its examples in any order. The proposed system

attempts to organize all worked-out examples into coherent groups based on their learn-

ing units (instead of lessons). This type of organization can be very helpful to students,

especially at the time of final exam preparation. For example, in existing systems such

as NavEx (Yudelson & Brusilovsky, 2005), if a student s1 wants to study examples on

lesson 5 (“for-loops”), then s1 must navigate to lesson 5. But there may be examples on

“for-loops” in other lessons (e.g. in lesson 8 on functions), which s1 will not see unless

he/she navigates to lesson 8. This thesis proposes a clustering method that will allow all

worked-out examples with “for-loops” to be in a single cluster.

2.2.3 Example-based ITS for non-programming domain

Muldner and Conati (2007) proposed a method called EA-Coach (example-analogy coach)

for selecting examples that tailor the needs of individual students based on an example-

based learning method known as analogical problem solving (APS). The authors claim

that their approach encourages meta-cognitive skills such as self-management and un-

derstanding and doing the task instead of just copying it from the suggested examples.

EA-Coach takes 3 inputs : a student model represented as a Bayesian Network (BN)

(Muldner & Conati, 2007) describing attributes such as student’s domain knowledge and

any indication of good meta-cognitive skills, solution of the current problem/task stored

as a sequence of steps and solutions to each example also stored as a sequence of steps.

Solution of problem/task and examples are stored as a sequence of steps, each step de-

rived using a rule. To retrieve the most appropriate example, solutions of the task and

examples are compared stepwise. Two corresponding solution steps (of the task and the

example) are defined to be structurally different, if they are not generated by the same

rule and identical otherwise. Two identical steps are defined to be superficially different
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in 2 ways : trivial and non-trivial. They are considered identical and superficially dif-

ferent in a trivial way, if by replacing a constant value in example step by a constant

value of a problem step generates a correct solution step of the problem. In simple words,

if the student can just copy a value from the example and replace it in the problem to

get its solution, it is called trivial. If it doesn’t allow a simple copy-and-replace, then

it is non-trivial. For example, Pstep1 and Estep1 in figure 2.4 are trivially superficially

different - different because the constants used in PStep1 and EStep1 are different; trivial

because PStep1 can be transformed to EStep1 just by a copy of the constant values from

PStep1 to EStep1. A BN is a directed acyclic graph (DAG) of random variables (such as

concepts, e.g., Add 2 fractions) that uses Bayes theorem (Pang-Ning et al., 2005) to de-

pict the relationships (probabilities) between these variables. Bayes theorem states that

conditional probability P(H|X) (defined as the probability that event H occurs, given X)

of a variable H on X can be computed as P(H|X) = P(X|H)*P(H) / P(X), where H is

the hypothesis and X is the data sample. P(X|H), P(H) and P(X) are estimated using

training data. BNs used in student models typically have their DAGs designed by experts

and the probabilistic relationships between variables are estimated by using some training

data. In EA-Coach, BN representing the student model consists of nodes for each rule,

where each node stores the probability of the student’s knowledge of that rule. It also has

nodes that indicate the student’s attitude towards a problem (e.g., whether the student

likes to copy-and-replace from an example to reach the task’s solution) and a similarity

value between corresponding rules of the task and each example. Based on these values,

it simulates the student’s behavior. Each node in a BN has a table called conditional

probability table (CPT) that stores the probabilities of that node, conditioned on its

parent nodes (also called ancestor nodes). For example, at time t, BN has 2 nodes for

rule 1 and rule 2, a fact node to represent x=y+z with the fact node having the 2 rule

nodes as its parents. If the probability of node for rule 1 is 0.8 and for rule 2 is 0.5, then

the probability that the student knows the fact x = y + z if he knows both the rules

(P(Fact | Rule1, Rule2) = 0.95) is 0.95 as opposed to 0.5 if he knows only rule 2 (P(Fact

| ~Rule1, Rule2) = 0.5). In fact, the fact node’s CPT will have 2 other probabilities

P(Fact | Rule1, ~Rule2) and P(Fact | ~Rule1, ~Rule2). The probability that a rule is
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Figure 2.4: Relation between corresponding steps of a problem/task and an example as
proposed by Muldner and Conati (2007)

known to the student is called its utility value. At the end, the utility values of each rule

are summed up (assuming that each rule has the same weight). The example with the

highest utility value is then picked for the student.

Limitations

Although the strength of EA_Coach (Muldner & Conati, 2007) is that examples are

selected adaptive to the student’s knowledge and his/her meta-cognitive skills, but the

domain model that consists of each solution (problem and example) represented as a

sequence of steps or rules is done manually and requires a tremendous time and effort of

highly trained experts.
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2.3 General evaluation methodology for any ITS

An Intelligent Tutoring System (ITS) is a blend of education and technology and there-

fore, belongs to a category different from Education alone or Technology alone (Woolf,

2010). In general, evaluating an ITS consists of 3 steps (Shute & Regian, 1993):

1. Establish goals of the tutor: Every tutor is built upon a learning theory (such as

Example-based learning (EBL)) to achieve its prime goal, which is to accomplish

the learning outcomes of the domain it teaches. For example, the prime goal of

ANDES (Schulze et al., 2000) is to teach introductory Physics to Undergraduate

courses and the primary goal of ERS is to teach C programming as an introductory

course to Undergraduate students (Chaturvedi & Ezeife, 2015b).

2. Identify goals of evaluation: Shute and Regian (1993) argue that although the prime

goal of an ITS, like any other tutor, is to focus on improving the learning outcomes

for the domain they teach, they may have alternate goals as well. For example,

an alternate goal of ANDES (Schulze et al., 2000) is to provide relevant hints to

students and that of ERS (Chaturvedi & Ezeife, 2015b) is to increase the likelihood

of student success in graded tasks, where success is measured in terms of higher

marks.

3. Build an evaluation methodology : An evaluation methodology dictates how the the

prime and alternate goals of the ITS are measured. Building such a methodology

relies on answers to 3 basic questions:

(a) What is evaluated? This questions refers to the prime and alternate goals

of the tutor identified in steps 1 and 2. In general, an ITS is evaluated in 3

different ways:

i. as a tutor or educator that measures the educational impact of the ITS

(Shute & Regian, 1993; Woolf, 2010).

ii. in terms of its individual components and their algorithms (e.g. evaluate

modules KE, KC and KO of ERS (Chaturvedi & Ezeife, 2015b)).
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iii. in terms of different features used in the ITS (Mark & Greer, 1993; Greer

& Mark, 2016).

(b) What is the type of evaluation methodology (Formative / Summa-

tive)? Formative evaluation is a method in which a group of users test the

system while it is still in the developing stage, so that they can assist in the

process of development, if necessary. This is not a very common method to

evaluate ITS because of their complex and dynamic nature (Mark & Greer,

1993; Greer & Mark, 2016). However, it can be applied to evaluate its individ-

ual components (e.g. ERS’s experts use it to validate its knowledge extraction

module). Summative evaluation assesses whether the end product of the ITS

accomplishes its goals (e.g. do students using ERS tend to score higher marks

in the assigned tasks). It evaluates the complete system and attempts to prove

the formal claims made about the system (Mark & Greer, 1993). It provides

objectivity and makes it possible to measure factors such as the tutor’s educa-

tional impact. Experimental Design, a commonly used method of evaluation in

areas such as Psychology, facilitates an ITS’s summative evaluation. It starts

by forming a research question (R) and making a hypothesis based on that.

Once a hypothesis (H) is made, research is designed (D) to examine H. Then

the study is completed using D and its data is analyzed to prove that results

conform to H. Most of the existing ITS (e.g. (Arroyo et al., 2003; Yudelson

& Brusilovsky, 2005; Li & Chen, 2009)) use this method for a summative

evaluation of their goals. ERS is evaluated as a tutor in chapter 6.

(c) How is an ITS evaluated? Is the tutor evaluated as standalone or against

other existing tutors? Woolf (Woolf, 2010) summarized six different ways in

which ITS tutors are evaluated:

i. C1: Tutor alone: In this method, one group of students use the ITS and a

test at the end determines if students meet the ITS’s learning outcomes.

A disadvantage of this method is that its learning outcomes cannot be

compared to any other system and therefore it is difficult to identify the
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ITS features that make learning effective. PADS (Li & Chen, 2009) uses

C1 to meet its goals.

ii. C2: Tutor verses non-interventional control: Students, in this method, are

divided into 2 groups. One group of students uses the ITS, whereas the

other group receives no teaching at all. This method is useful only if the

ITS is designed to prove whether a web-based electronic tutoring system is

better than students learning on their own. This method is clearly biased

towards group 1 students that use the ITS. It is also difficult to identify

the ITS features that could lead to better learning.

iii. C3: Tutor verses traditional classroom teaching: In C3, students are di-

vided into 2 groups. One group of students uses the ITS, whereas the

other group receives classroom teaching. Similar to C2, this method is

useful only if the ITS is designed to prove whether a web-based electronic

tutoring system is better than human tutors. This method also has dis-

advantages similar to C2.

iv. C4: Tutor1verses Tutor2: C4 divides students into 2 groups. Group 1

of students works with version 1 of the ITS (Tutor1), whereas group 2

works with a different version of the same tutor (Tutor2). This method is

very effective but it is very time-consuming and resource-intensive to build

more than versions of the same tutor and test them. An example of C4 is

WebEx as Tutor1 (Brusilovsky, 2001) and NavEx as Tutor2(Yudelson &

Brusilovsky, 2005). NavEx was developed by the same group of researchers

to improve upon the limitations of WebEx.

v. C5: Tutor verses ablated tutor: Once again, students are divided into 2

groups. Group 1 of students works with a complete version of the ITS,

whereas group 2 works with the same tutor minus one or more features

of that ITS (e.g. group 1 is allowed to visit all worked-out examples

in ERS’s database, whereas group 2 is allowed to browse only selected

examples that ERS recommends). According to Woolf (2010), ablation
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experiments compare learning performances to identify those features that

improve learning by removing certain design features of the ITS. C5 is very

effective but it does suffer from the risk of being biased towards students

in group 1.

vi. C6: Tutor A verses Tutor B: In C6, students are divided into 2 groups.

Both groups work with entirely different ITS that are developed by dif-

ferent teams and may even be built on different learning theories. Such

a methodology may be useful when the goal is to measure and compare

ITS design and how students interact with them. A disadvantage of such

a method is that it is difficult for a research team to find 2 tutors that

cover exactly the same topics and are built for the same learning outcomes.

Hosseini and Brusilovsky (2013) use this method of evaluation to compare

2 tutors that teach Java Programming, Knowledge Maximizer (Hosseini

et al., 2013) (Tutor A) and Quizguide (Tutor B).

Table 2.7 illustrates these stages for some ITS systems based on EBL learning theory. The

most challenging aspect of evaluating the goals of an ITS is the size of the student model

component. In some situations, the class sizes are small, whereas in others, students are

reluctant to participate in a research study. As the table shows, (summative) evaluation in

both WebEx (Brusilovsky, 2001) and NavEx (Yudelson & Brusilovsky, 2005) was solely on

the usage of their resources. WebEx was offered to students registered in an introductory

programming course for three semesters in their study (spring 2002, fall 2002 and spring

2003) but only 18 students filled the questionnaire form that was required for WebEx’s

subjective evaluation. NavEx (Yudelson & Brusilovsky, 2005) used 34 active students in

their study - 23 students from Spring 2004 term and 11 from Fall 2004 term. PADS (Li

& Chen, 2009) included 50 first-year students and measured the total number of tasks

students can complete in a given period, if the tasks are from their zone of proximal

development (Vygotsky, 1987). KM (Hosseini & Brusilovsky, 2013) used 14 students in

their study from one term of an undergraduate Java Programming course.
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WebEx
Brusilovsky
(2001)

NavEx
(Yudelson &
Brusilovsky,
2005)

PADS
(Li & Chen,
2009)

KM
Hosseini &
Brusilovsky
(2013)

Goal(s) of
Tutor

To motivate
students to
use an online
system so
that they can
optimize the
use of
comments in
C programs

To improve
the quality of
adaptive
navigation
support for
the system
developed for
WebEx

To allow
students to
spend less
time on given
tasks so that
they can do
more tasks in
a given time
period

To support
Java
Programming
students in
preparing for
final exam

Goal(s) of
evaluation

To improve
frequency of
use of
examples and
improved
course
coverage

To improve
the adaptive
support of
WebEx to
improve
frequency of
use of
examples and
improved
course
coverage even
further

To present
students with
tasks of
appropriate
difficulty
level (using
zone of
proximal
development)

To provide
students with
a sequence of
questions
that help
him/her to
fill in gaps in
java
knowledge
towards final
exam
preparation

Evaluation
Style

Formative/
Summative

Summative Summative Summative Summative

Evaluation
Methodology

C1 (Tutor
alone)

C4 (Tutor1vs
Tutor2)

C1 (Tutor
alone)

C6 (Tutor A
verses Tutor
B)

Number of
students used
in the study

18 34 50 14

Table 2.7: Evaluation goals and methodology used in ERS and other EBL-based ITS
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2.4 Chapter 2 Overview

Chapter 2 presents the data mining techniques used commonly in ITS (e.g. Clustering,

Classification, Association Rule Mining). It then presents a taxonomy of existing ITS

that are built on EBL (Example Based Learning) strategy. The techniques used in such

existing systems (both in the programming and non-programming domain) and their

limitations are described. It also presents the general evaluation methodologies used in

ITS and briefly highlights the methods used to evaluate the proposed system.
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Chapter 3

Proposed Architecture for an

EBL-based ITS

An Intelligent Tutoring System (ITS) provides direct customized instruction or feedback

to students when they perform a task in a tutoring system without the intervention

of a human. As described earlier in chapter 1, one of the main functions of an ITS

system is to present its students with course materials that are most useful to them

in terms of their own knowledge on the domain and in terms of other resources in the

ITS such as tasks assigned to them. ITS typically compare and analyze student model

(SM) components to estimate student’s current knowledge or mastery on the basic topics

of the domain (e.g. scanf is a topic in the domain of C programming) and use such

estimates to recommend resources that the ITS thinks will help students to succeed in

learning the domain. This thesis proposes a framework called Example Recommendation

System (ERS) that is built upon EBL and that uses state-of-the-art mining methods in

order to recommend a focused, organized and customized list of worked-out examples

with the overall objective of increasing the likelihood of student success in the ITS’s

domain. Example-based learning (EBL) is a well-known teaching strategy in traditional

educational systems (VanLehn, 1998; Gog & Rummer, 2010; Renkl, 2014) and worked-out

examples are an important and an almost an inherent part of this teaching methodology.

Although research in ITS has gone a long way in simulating the role of a teacher in many
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ways, not much progress has been made on designing ITS based on EBL methodology.

Existing systems such as NavEx (Yudelson & Brusilovsky, 2005), PADS (Li & Chen,

2009) and those used by Hosseini and Brusilovsky (2013) use EBL in their ITS but they

have several limitations as described in sections 2.2 and 2.3 and also listed in section

3.2. This thesis proposes to alleviate the limitations that exist in many key components

involved in the design of an EBL-based ITS.

3.1 Definitions

Key definitions of the basic entities that play a major role in this research are listed here.

Definition 1: Domain of an ITS refers to the subject or course that the ITS is designed

to teach (mostly within a limited scope) (e.g. domain of C programming).

Definition 2: A task in an ITS is defined to be a gradable question or instruction

assigned to students (e.g. task T1: ’There are 2.54 centimeters to 1 inch. Write a

C program that asks a user to enter the value of his/her height in inches and then

displays the height in centimeters.’).

Every course that is offered for credits (be it in traditional classroom teaching or online

teaching environment) requires some gradable instruments such as tasks, assignments,

quizzes and tests, so that student performance on the domain can be measured objectively.

ERS (proposed ITS) uses marks scored by students in tasks to measure their performance

in the course. Tasks and their marking schemes are provided by domain experts.

Definition 3: A task solution is the correct solution of the question or instruction asked

in a task (e.g. task solution for T1 is shown in figure 3.1).

Task solutions are provided by domain experts.

Definition 4: A worked-out example (WE) refers to a complete or partial worked-out

solution of a question or instruction (similar to examples in textbooks).

Worked-out examples are provided by domain experts. The proposed method uses the

same structure for task solutions and worked-out examples. Figure 1.1 in chapter 1 shows
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Figure 3.1: Sample Task Solution of task T1: ’Write a program that asks a user to enter
the value of his/her height in inches and then displays the height in centimeters’.

a worked-out example of a C program that computes and prints the area of a triangle,

given its base and height.

Definition 5: A learning unit (LU), also referred to as a topic or concept, is the smallest

basic unit of knowledge in that domain that a worked-out example or a task solution

is divided into. For example, “scanf” is an LU in the domain of C programming.

Similarly, “fraction” is an LU in the domain of Math.

Domain experts define all learning units that an ITS must have, depending on the scope of

the domain. For example, if the domain is Math and its limited scope is to teach addition

of 2 fractions, then the learning units required for this scope are addition, multiplication,

division, numerator of a fraction, denominator of a fraction, least common multiples of 2

whole numbers and reducing fractions.
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3.2 Problems identified in existing ITS based on Example-

based learning

This thesis identifies several problems in existing ITS systems that are designed using

example-based learning method (discussed in chapter 2).

1. Domain Knowledge Acquisition and Extraction: Existing systems (chapter 2 sec-

tion 2.2) extract knowledge (in terms of LUs) from tasks and worked-out examples

using techniques that are either manual, or automatic but so domain-specific that

they cannot be easily adapted to other domains and require highly trained experts.

Many existing ITS (Yudelson & Brusilovsky, 2005; Hosseini et al., 2013; Mokbel

et al., 2013; Hosseini & Brusilovsky, 2014) require experts to write grammar rules

and create syntax trees for resources such as worked-out examples. Others require

experts to manually list the learning units that each resource consists of (Li &

Chen, 2009). These methods not only limit the capabilities of domain knowledge

extraction as extendable in scope of the current domain or to newer domains, they

also require significant effort by experts.

2. Task-independence: Existing systems surveyed in section 2.2 recommend worked-

out examples independent of any task assigned. The onus lies on students to fetch

examples that will help them succeed in a task or test.

3. Customization methods: Existing systems such as NavEx (Yudelson & Brusilovsky,

2005) lack in use of state-of-the-art mining methods to search for relevant worked-

out examples. Others such as PADS (Li & Chen, 2009) build models based on

features that are very domain-specific and subjective. Such limitations are a direct

consequence of lack of a robust pre-processing module that represents student and

domain data in a way that enables state-of-the-art mining methods.

4. Organization style and methods: Some existing systems such as PADS (Li & Chen,

2009) do not present their worked-out examples in any organized way. In other

systems, such as NavEx (Yudelson & Brusilovsky, 2005), experts organize their
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examples in the traditional way found in textbooks (lesson-wise). Hosseini and

Brusilovsky (Hosseini & Brusilovsky, 2013) propose methods to index their worked-

out examples but do not organize them as groups. Organizing worked-out examples

using automated methods into groups such that all those with related LUs are placed

in one group can be very useful to students when they prepare for exams (e.g. final

examination) and for domain experts in managing their resources.

5. Lack of modularity: None of the existing systems surveyed in section 2.2 present a

modular framework to accommodate the various functionalities of a complex ITS

system. This makes them less extendable to other domains.

6. Incomplete evaluation methods: An ITS is typically a complex system that consists

of domain and student model data and various components such as KE, KC and

KO. Therefore, it must be evaluated not only on its prime role as a tutor, but also

on its alternate goals such as evaluation of its individual components and features.

Existing EBL-based ITS are evaluated only on their educational impact using data

that is subjective and usage-driven (e.g. how many times a student clicks on a

worked-out example).

3.3 Research Questions

In light of the problems identified in section 3.2, we put forth the following research

questions to be answered by this dissertation:

Research Question RQ1 Is it possible to design knowledge extraction methods that

are (1) simple, (2) efficient, (3) can extract LUs from worked-out examples and

task solutions correctly and (4) are extendable to new domains without the need of

highly trained experts?

Answer: Yes, it is possible. An ITS that supports example-based learning (EBL) does

not require to consider and verify syntactic relationships between the extracted LUs of

task solutions or worked-out examples in order to perform its functions - it just needs to

identify the existence of LUs in them. Therefore, following the principle of Occam’s razor
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(Domingos, 1999), which states that if there are two models performing the same func-

tion, the simpler one should be preferred, we propose to use regular expression analysis

to extract LUs, instead of complex methods such as syntax trees (as used in many exist-

ing systems (Yudelson & Brusilovsky, 2005; Mokbel et al., 2013; Hosseini & Brusilovsky,

2014)). Chapter 5 section 5.2 validates our proposed algorithm’s correctness and ex-

tendibility.

Research Question RQ2 What impact does a focused and concise list of worked-out

examples have on student performance and learning?

Answer: This question has 2 parts: (1) Can data mining methods be applied on ITS

data to generate list of worked-out examples focused towards an assigned task? (2) Does

a focused list improve student learning?. Chapter 5 section 5.3 validates our proposed

algorithm that builds a highly accurate mining model to generate such a focused list of

examples for each assigned task. Chapter 6 compares student performance in different

scenarios and demonstrates that it does improve student learning.

Research Question RQ3 Can inclusion of global relevance of LUs in a set of worked-

out examples impact cluster formation?

Answer: Yes it can. We propose to organize all worked-out examples in the ITS in order to

assist students with final exam preparation. For binary data, standard k-means algorithm

uses mode to compute and recompute its centroids in each iteration, and therefore clusters

formed are biased towards those LUs that are present in very few worked-out examples.

Including the global relevance of such LUs while computing cluster centroids forms better

clusters that are well-separated and compact. Chapter 5 section 5.4 answers this question.

Research Question RQ4 Is there a way to clearly define and integrate different mod-

ules of an ITS and if so, how?

Answer: Yes, there is. To answer this question, we present an architecture for the pro-

posed ITS called ERS in chapter 4 in which knowledge extracted from the domain model

is used to represent each worked-out example and task solution in vector space and is
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then integrated into the knowledge customization (KC) and knowledge organization (KO)

modules. Chapter 5 presents the experiments done for each module of ERS.

Research Question RQ5 How does selection of features from domain and student

models of an ITS impact the accuracy of predicting student performance?

Answer: We claim that designing a predictive model using features that are better in-

formed about the assigned tasks and its components improves its accuracy (e.g. features

such as difficulty level of the task, student’s average marks on LUs of a task). Chapter 7

section 7 validates our claim.

3.4 Thesis statement

Given (i) a domain model that consists of:

• set L of basic LUs taught by the ITS

• set W of worked-out examples constructed using one or more of the LUs defined by

the expert

• set T tasks created with the intent to measure student performance in the domain

objectively

• set TS that consists of solutions of all tasks in T

and (ii) a student model describing for each student s

• s’s static information such as ID and name

• s’s knowledge on the LUs in L

• s’s learning behavior captured by s’s interaction with ERS

the problem of motivating students to study recommended course materials (such as

worked-out examples) towards meeting their short-term goal of succeeding in the current

task and their long-term goal of learning the domain can be formulated as an integration

of three independent but cohesive components:
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1. Knowledge Extraction (KE) : is defined as the process of extracting LUs from

worked-out examples and task solutions. This requires the domain experts to define

the LUs in the domain, create all resources for the domain model such as task

solutions and worked-out examples and describe effective, efficient and extendable

algorithms to extract LUs from them. The aim of KE in this study is to design

methods that can be easily extended to other domains without the need of highly

trained experts.

2. Knowledge Customization (KC) : is defined as the process of generating a concise

list of worked-out examples customized towards the tasks assigned to students by

ERS and to their current knowledge on the domain.

3. Knowledge Organization (KO) : is defined as the process of organizing all worked-

out examples into coherent groups based on the LUs they contain. Such a list can

be very helpful to students at the time of final exam preparation.

We achieve this integration of components KE, KC and KO by designing a framework

called Example Recommendation System (ERS), whose architecture is described next.

3.5 Basic Architecture of ERS

The proposed ERS framework defines four main modules as shown in figure 3.2. Knowl-

edge extraction (KE) module mainly interacts with domain experts to automatically

identify all learning units (LU) that the task solutions and worked-out examples in the

domain model contain and represent them as n-feature vectors, where n is the total num-

ber of LUs in ERS. These are then conveniently stored and represented in a relational

database by the knowledge representation (KR) module. Anytime a new task or worked-

out example is added to ERS’s domain model, it goes through the knowledge extraction

module and and is transformed into an n-feature vector. Similarly, each student’s in-

formation is also stored in the relational database. Knowledge customization (KC) uses

the feature vectors of task solutions and worked-out examples resulting from KE to build

a data mining model that generates the list of worked-out examples that are closest to
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the assigned task. Knowledge organization (KO) also uses these vectors to cluster all

worked-out examples that are closest in terms of the LUs they contain (instead of the

lessons they belong to). Chapter 4 describes each module in detail.

3.5.1 Methodologies for evaluating ERS

ERS is a complex system that consists of several modules with different functionalities and

diverse datasets emerging from its student and domain models. We perform a rigorous

evaluation of ERS using techniques described in chapter 2 section 2.3. ERS is evaluated

using a combination of formative and summative evaluation methods and a modified C5

(tutor verses ablated tutor) to evaluate its prime goal of improving student learning and

alternate goals of building state-of-the-art models for its individual components using

effective student and domain model features. It is evaluated in three distinct ways: (1)

EM1: evaluate its individual components and their algorithms (discussed in chapter 5)

(2) EM2: evaluate it as a tutor (discussed in chapter 6) and (3) EM3: evaluate its student

and domain model features (discussed in chapter 7).

3.6 Motivation for choosing the domain

The proposed ERS system is designed and validated for Programming in C domain. KE

component of ERS is also validated on a second domain (Programming in Miranda).

University of Windsor offers an online version of a course on Programming in C for first

year undergraduate students. It also offers an undergraduate course on Programming

in Miranda. Although we have the best teachers to teach these courses, it becomes

impossible for them to provide one-on-one assistance to students, either because of large

class sizes or due to time conflicts between student and teacher schedules. University of

Windsor provides a robust learning management system (LMS) to host course materials

for each course offered such as lecture slides, examples and assignments. The LMS used

until Fall 2015 was CLEW (Collaborative and Learning Environment Windsor) (Windsor,

2014b). Although CLEW has been replaced by Blackboard (Windsor, 2014a) fromWinter

2015, this thesis uses CLEW for its research. CLEW is used to support teaching and
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Representation 

(KR)
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(WE)

2. Tasks (T) 
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Difficulty level of tasks

Figure 3.2: Architecture of the proposed ERS system
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Figure 3.3: Course Structure on CLEW

learning in face-to-face, distance education and blended courses (www.uwindsor.ca/clew).

A typical course structure used on clew is shown in figure 3.3. Each course has a set

of objectives, required reading assignment and a set of assessment instruments - both

supervised (e.g. graded tests) and unsupervised (e.g. assignments). Students use the

discussion board and chat rooms to collaborate with their peers or post concerns related

to the course. Students registered in Winter 2015 were offered to use ERS, whereas

students registered in Fall 2015 were required to use ERS, in addition to using clew and

its resources.

3.7 Scope of ERS domain

ERS uses 2 domains for its experiments - domain D1 is on programming in C and domain

D2 is on Programming in Miranda. Domain experts of ERS define its scope in terms of

learning units (LUs) that ERS teaches. Each worked-out example and task solution in

ERS is represented in terms of these LUs and the hierarchy they follow is:

Domain consistsOf Task solutions consistsOf Learning Units

Domain consistsOf Worked Out Examples consistsOf Learning Units
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LU1 LU2 LU3 LU4 LU5 LU6 LU7 LU8
datatype variable assignment arithmetic

expression
simple

arithmetic
expression
compound

printf -
constant
messages
only

printf -
variables
only

printf -
mixed

(a) Learning units LU1 - LU8

LU10 LU11 LU12 LU13 LU14 LU15 LU17 LU18
scanf -
single
input

scanf -
multiple
input

relational
expression

logical
expression

mixed
expression
relational
logical

mixed
expression
(all types)

compound
statement

while
loop
simple

(b) Learning Units LU10 - LU18

LU19 LU20 LU22 LU23 LU24 LU25 LU26 LU27
for loop
simple

nested
loops

if /else
statement

nested if /
else

switch function
prototype

function
definition -
call by
value

arrays

(c) Learning Units LU19 - LU26

Table 3.1: Scope of ERS’s Domain D1 (Programming in C)

3.7.1 Domain D1: Programming in C

Table 3.1 lists the LUs in the scope of ERS’s domain D1.

3.7.1.1 How are domain model’s resources built and refreshed?

Source 1: Textbook written by Dr. C. I. Ezeife (2010).

Source 2: Resources developed for a course on C Programming offered by University

of Windsor to first-year Undergraduate non-Computer Science majors (Windsor,

2014b).

Dataset for domain D1 is further described in section 5.1.

3.7.2 Domain D2: Programming in Miranda

Table 3.2 lists the learning units in the scope of ERS’s domain D2. Learning Units for

domain D2 start at LU41 and end at LU56.
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LU41 LU42 LU43 LU44 LU45 LU46 LU47 LU48
Arithmetic
Operator

Foldr Map Empty
List

Function
Composi-

tion

If
Statement

List
Compr-
ehension

List -
Many

Elements
(a) Learning units LU41 - LU48

LU49 LU50 LU51 LU52 LU53 LU54 LU55 LU56
List One
Element

List
Operator

Primitive
Type

Recursion Relational
Operator

Tuple String Logical
Operator

(b) Learning units LU49 - LU56

Table 3.2: Scope of ERS’s domain D2 (Programming in Miranda)

3.7.2.1 How are domain model’s resources built and refreshed?

Source: Resources developed for a course on Key concepts in Computer Science (includes

Miranda Programming) offered by University of Windsor to first-year Undergradu-

ate students with Computer Science major (Frost, 2015).

Dataset for domain D2 is further described in section 5.1.

3.8 Chapter 3 Overview

Chapter 3 begins by defining all elements such as tasks, task solutions, worked-out exam-

ples and learning units that play a key role in the framework of the proposed EBS_based

ITS called ERS. The main elements that connect ERS with students are tasks and worked-

out examples. This chapter then presents the research questions and defines the thesis

statement of this dissertation. It also presents the basic framework and scope of ERS.
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Chapter 4

Example Recommendation

System (ERS)

This chapter describes each module of the ERS framework along with the techniques

and algorithms used in them. Sections 4.1, 4.2, 4.3 and 4.4 present the core algorithms

and methods used in knowledge extraction from ITS resources, their representation, cus-

tomization of resources to student needs and knowledge organization. Section 4.5 demon-

strates an example that clearly integrates the 3 modules to accomplish the objectives of

ERS.

4.1 Knowledge Extraction in ERS

The goal of knowledge extraction (KE) module of ERS is to automatically transform each

task solution and worked-out example in its domain to a binary vector of size n, where

n = number of LUs in ERS. The main motivation to design and implement new KE

algorithms for EBL-based ITS such as ERS is the lack of its extendibility in the existing

systems to other domains. This section explains the novel algorithms proposed by ERS

for KE that are simple, efficient and easily extendable to other domains.
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4.1.1 Domain Model

A domain model of an ITS defined by experts in the domain stores the correct knowledge

of what is taught within the scope of the ITS. Domain model of ERS is built by a pool

of Computer Science instructors and students (graduate and undergraduate majors) and

consists of the following items:

1. Worked-out examples: Figure 1.1 in chapter 1 shows an example solution (repeated

below for convenience). Table 4.3a shows several other worked-out examples.

2. Tasks assigned to students: An important function of any tutoring system is the

ability to measure its students performance objectively. ERS asks its students

to perform several tasks to assess them objectively on the learning units taught by

ERS. For example, Task T1, as given in chapter 3, is ’T1: There are 2.54 centimeters

to 1 inch. Write a C program that asks a user to enter the value of his/her height

in inches and then displays the height in centimeters’.
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3. Task solutions: domain experts provide solutions to every task that is in ERS’s

database. Task solutions share the same structure as a worked-out example. Figure

3.1 shows a solution for task T1 and is repeated here for convenience.

4. Learning units (LUs) : defined by experts for the scope of ERS. Experts are required

to list all LUs in the ascending order of difficulty such that LU1 represents the

simplest LU while LU50 has a higher level of difficulty and LU100 has even higher

level of difficulty than LU50. They are also required to partition the complete list

of LUs into 2 disjoint sets of simple (S) and complex (C) LUs based on material

difficulty. For example, experts on C define the list of LUs in order of difficulty as

Datatype < Variable < scanf < BE < for loop < function definition (only six LUs

are shown here) and partition them as S = {Datatype, Variable, scanf, BE} C = {

for loop, function definition}.

5. Algorithms for extracting LUs from task solutions and worked-out examples: ERS’s

domain experts provide regular expressions for each LU in its scope and algorithms

to extract one or more of these LUs from given task solutions and worked-out
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examples. Section 4.1.2 defines regular expressions and the process of using regular

expressions for KE module of ERS.

4.1.2 Knowledge Extraction using regular expressions

In order to facilitate the functionality of ERS (such as customization in KC discussed in

section 4.3) that compares task solutions and worked-out examples), our system divides

each worked-out example and task solution to one or more LUs they require or cover. This

is achieved by pattern matching using regular expressions. A regular expression (RE) is

defined as a set of characters that describe a pattern (Friedl, 2006). A RE is made up of

constants and symbols that have a special meaning and are known as metacharacters (e.g.

symbols such as \, ?, *, + and |). Some commonly used metacharacters are explained

below with examples.

• +: this symbol matches the preceding character one or more times. For example, a

RE re1 given as Joh+n matches strings that start with Jo followed by 1 or more h,

followed by n. Input strings such as John and Johhhhn will be recognized by re1

but not Jon.

• *: this symbol matches the preceding character zero or more times. For example,

a RE re2 given as Joh*n matches strings that start with Jo followed by 0 or more

h, followed by n. Input strings such as Jon, John and Johhhhn will be recognized

by re2.

• \: symbol \ is used when it is required to override the meaning of the used metachar-

acter symbol with its literal meaning. For example, a RE that identifies strings such

as 1 + 1 = 2 needs to override the meaning of metacharacter + with the literal

meaning of +. RE re3 must be written as d \+ d = d (where d is any single digit

from 0 .. 9) in order to identify strings such as 1 + 1 = 2 (RE written incorrectly

as d + d = d will identify strings such as 1234 = 6 and 1 = 5).

• ?: symbol ? makes the preceding character in the regular expression optional. For

example, RE re4 given as Joh?n matches both strings John and Jon.
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Regular
Expression

Explanation - Regular expression in column 1
matches

1 \s any whitespace character
2 \s* 0 or more whitespace characters
3 \a character a literally
4 . any character except newline
5 .* any character (except newline) 0 or more

times greedily (returns the longest match)
6 .*? any character (except newline) 0 or more

times lazily (returns the shortest match)
7 (a|b) either a or b
8 [^a] any character except a
9 \d digit 0 .. 9

Table 4.1: Few Regular expressions with metacharacters and their explanations

• |: symbol | matches either the preceding character or the proceeding one but not

both. For example, RE re5 Joh|n matches Joh and Jon but not John.

Table 4.1 describes a few regular expressions using metacharacters and their meaning. RE

\s matches any whitespace character (newline, blank space or tab), whereas \s* matches

0 or more whitespace characters in an input string. Symbol . matches any character

except newline. Similarly, .*? matches any character (except newline) 0 or more times

but stops as soon as it finds its first occurrence. For example, if RE re6 is given as \“.*?\”

and is searched for in an input string s = “Value of “s” is %s”, then the resulting match

is Value of, whereas if RE re6 is given as \“.* \”, then the resulting match is Value of “s”

is %s (since .* continues its search until it finds its last occurrence).

Domain experts of ERS define RE for each LU listed in table 3.1, although only four

of them (LU2, LU6, LU7 and LU8) are shown in table 4.2 to illustrate the power of RE.

RE for LU2 states that a variable in C starts with a letter and can be followed by zero

or more letters and digits. ERS experts identify 3 different learning units for printing

in C (LU6, LU7 and LU8 as shown in table 3.1). RE for LU6 is simple - it allows all

characters within quotes except a % symbol. This is a limitation of ERS that it imposes

on its experts (RE for LU6 does not allow task solutions and worked-out examples to

print constant messages that includes a % symbol). For example, relu6 will correctly

identify statements such as printf(“Welcome”); or printf (“ wel come “); but will fail
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Learning
Units

Regular expressions

LU2
(variable)

relu2:
[a-zA-Z_][a-zA-Z0-9_]*

LU6
(print
constant
messages
only)

relu6:
printf \s* \( \s* \" [^%]+ \" \s* \) ;

LU7
(print
variables
only)

relu7 :
printf \( \" (\%[dcf])+ \" \, [a-zA-Z_][a-zA-Z0-9_]* (\,
([a-zA-Z_][a-zA-Z0-9_]*) )+ \) ;

LU8
(print
mixed
constant
messages
and
variables)

relu8:
printf(\ |\s)*\((\ |\s)*\".*\"((\ |\s)*,(\
|\s)*([a-zA-Z_][a-zA-Z0-9_]*|[0-9]+))*(\ |\s)*\)(\ |\s)*;

Table 4.2: Regular expressions for an identifier and printf used in ERS

to identify statements such as printf “Welcome” or printf(“Wel%come”);. RE for LU7

(relu7) identifies printfs with variables and format specifiers only (e.g. printf(“%d%c”,

area, option);). RE for LU8 (relu8) identifies printfs with both messages and variables

(e.g. printf(“Area of a triangle = %f”, area);). A limitation of using RE for identifying

LUs in given task solutions and worked-out examples is that RE do not verify if the

number of variables matches the number of format specifiers in a printf statement. But

since the worked-out examples and task solutions are provided by the domain experts,

this limitation can be handled if ERS assumes that experts are always right and they

provide the correct solution.

4.1.3 Proposed algorithm for knowledge extraction (KERE)

This study asserts that, to present relevant worked-out examples for a specific task in

ERS, it is sufficient to extract the basic learning units (LU) of the task (from its solution)

and evaluate if these LUs match closely to the LUs of existing examples in ERS’s database,

thus eliminating the need for a complex syntax tree representation of each example and
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Algorithm 2 Knowledge extraction using regular expressions (KERE)
Inputs:
1. learning Units (LU) in the domain
2. set of regular expressions {RE} - one for each concept in LU
3. string TEsoln of task / example solution
Output: LU_TE: list of {LUs that TEsoln covers, number of times a LU occurs in
TEsoln}
Method:
***begin of KERE
1. LU_TE=[]
2. Clean TEsoln by removing comments, header files (including main’s header)
3. for each concept Cnin LU

3.1. let re = RE[Cn]
3.2. Cn.count =number of times a string in TEsoln matches re
3.3. if Cn.count >= 1, then

3.3.1.append (Cn, Cn.count) to LU−TE
***end of KERE

task as done by many existing systems such as NavEx (Yudelson & Brusilovsky, 2005).

The proposed system defines an algorithm called KERE (Knowledge Extraction using

Regular Expressions) (Chaturvedi & Ezeife, 2015b) to identify the presence of one or

more LUs in all those task solutions and worked-out examples that are written as partial

or complete C programs from a domain. KERE (algorithm 2) takes as input a task

solution or a worked-out example represented as a string (TEsoln) and outputs its LUs.

It first cleans TEsoln by removing the comments and header files in it. Then it does a

string pattern matching of the clean TEsoln against the regular expressions of each LU

to find the presence of a LU in TEsoln and returns the number of times the LU appears

in it.

Figure 4.1 shows a worked-out example and the LUs extracted from it by KERE.

Similarly, worked-out example in figure 1.1 contains LUs {LU1, LU2, LU3, LU5, LU6,

LU8, LU11}.

4.2 Knowledge Representation (KR) in ERS

Knowledge in ERS, refers to both domain knowledge and student knowledge (section 3.4).
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Figure 4.1: Worked-out example evaluate_expr and its LUs extracted by KERE

KnowledgeERS = Domain Knowledge
⋃

Student Knowledge

= {{LUs, Task, Task Solutions,WorkedOut examples}
⋃

{{Static information}
⋃
{Marks in individual LUs}

⋃
{Marks in assigned tasks}

⋃
{learning behavior}}

Information about these diverse entities and their relationships are best represented

using an Entity-relationship model (ER) (Chen, 1976). An ER model is a graphical

representation of entities and their logical relationships such that they can be easily

transformed into an implementation model such as a relational database model. The mo-

tivation for storing ERS data in a relational database is that it facilitates data integration

of multiple entities playing a role in ERS, and allows for easy and convenient addition,

deletion and modification of the data stored in the relational model.

4.2.1 Creation of basic building blocks of ERS’s relational model

Each entity type in the ERS’s ER model 4.2 is translated to a table in a relational database

model. For each binary M:N relationship shown in the ER model (such as attempts, ELU

and TLU), a new table is created with attributes that are the primary key attributes of

the M and N side of the relationship and any relationship attribute, if any. For example,

a new table called ELU is created with attributes (EID, LUID). For each 1:N relationship,

the primary key of the N side of the relationship is added as an additional attribute to
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Figure 4.2: Relationships between students, tasks, examples and LUs represented as an
entity-relationship model
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the table on the 1 side. For example, table Page in the relational model has an additional

(foreign) attribute called SID (indicating the pages that a student visits).

• Table LU, consists of the basic learning units in ERS’s domain model3.1. Table

LU has attributes (LUID : varchar2(3) primary key, Name varchar2(20), Com-

ment : varchar2(2000), LU_EX varchar2(2000) that stores an example of the LU,

LU_REG_EXP varchar2(1000) that stores the regular expression of the LU). For

example, a statement to insert a new LU called LU30 into this table is : insert into

LU values<’LU30’, ’digits’, ’one of more digits from 0..9’,’43’, ’\d+’ >.

• Table Task stores details on each task in the ITS and has attributes (TID : var-

char2(5), Name varchar2(20), Question varchar2(1000), Solution varchar2(2000)) .

For example, a new task T25 is inserted as :

insert into task values<’T25’, ’task_to_find_sum_prod’, ’Write a program in C to

read 3 integer numbers from the users and display their sum and product.’, ’#include

<stdio.h> int main(){ int x, y, z; int sum, product; scanf("%d%d%d", &x, &y, &z);

sum = x + y + z; product = x * y * z; printf("%d\n", sum); printf("%d\n", product);

return 0; }’>;

• Table Example stores details on each example offered by the ITS and has attributes

(EId : varchar2(5), Name varchar2(20), Description varchar2(1000), Solution var-

char2(2000)). For example, a new example E5 is inserted as :

insert into example values<’E5’,’calculate_temperature’, ’Write an equation in C

to calculate temperature in Fahrenheit, given temperature in Celcius’ , ’scanf("%f",

& celcius); fahrenheit = 9 / 5 * celcius + 32; ’ >;

• Table Student : Each student ’s student model has a static content such as id,

name and a dynamic content such as knowledge level on each LU. Student has

static attributes (SId: varchar2(5), Sname: varchar2(50)). The dynamic attributes

are stored in other tables such as Page and Achieves discussed below.

• Table attempts is created from the M:N relationship between tables Student and

Task. Students marks achieved in all assigned tasks and the number of attempts
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made by the student are stored in this table. Its attributes are (SID, TID, marks,

numberAttempts)

• Table TLU is created from the M:N relationship between tables Task and LU, and

therefore its attributes are (TID, LUID, Score). For example, a task T1 has 2

learning units: LU12 with a weight or score of 3 and LU20 with a score of 4; the

rows inserted in TLU are (’T1’, ’LU12’, 3) and (’T1’, ’LU20’, 4);

• Table ELU is created from the M:N relationship between tables Example and LU,

and therefore its attributes are (EID, LUID). Students are not graded on worked-out

examples, and therefore there is no attribute score in this table.

• Table Page logs the browsing history of students visiting a worked-out example

or task. Its attributes are (PID, SID, page_url, visited_timestamp). ERS defines

functions to retrieve the task or worked-out example visited from the page-url stored

in this table.

There is also a ternary relationship between Task, Student and LU that stores the marks

achieved by a student in a task’s LU. It is converted to a table called achieves with

attributes (SID, TID, LUID, marks). For example, student S1 achieves 2 marks in LU2

from task T1, and 4 marks for LU2 from task T5 will create 2 rows as (’S1’, ’T1’, LU2,

2) and (’S1’, ’T5’, ’LU2’, 4).

4.3 Knowledge Customization in ERS

The prime goal of knowledge customization (KC) module in ERS is to build a list a

worked-out examples that are most appropriate to the tasks assigned to students. The

motivation behind customizing domain knowledge towards student needs is to avoid cog-

nitive overload for students so that they can focus on the material suggested to them and

succeed in assigned tasks with a much higher likelihood.
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4.3.1 Computing the similarity between worked-out examples and task

solutions

The core algorithms of this module and the following knowledge organization module

described in section 4.4 are driven by similarity functions such as Euclidean distance

(Pang-Ning et al., 2005). We define similarity function as a function that computes the

similarity between assigned tasks and worked-out examples or between different worked-

out examples. The choice of a similarity function depends on the type of data attributes

used such as continuous, categorical and binary. Continuous data attributes are those

that can be measured (e.g. weight of a person). Categorical data attributes define

different categories of data but cannot be measured (e.g. gender, that has two categories

’F’ and ’M’). Binary data attributes are a special case of categorical data, that can have

only one of the two values 1 or 0. Binary data can be further categorized as symmetric

and asymmetric data. A symmetric binary attribute is one in which the presence of

a 1 is regarded as equally significant as its absence (0). For example, if gender is a

binary attribute, where 1 represents female and 0 represents male, then a 1-1 match

in two different classrooms (indicating a female-female match) is as significant as a 0-0

match (indicating a male-male match). Therefore gender is a symmetric attribute. An

asymmetric binary attribute is one in which the presence of one of the values (e.g. 1) is

regarded as more significant than the other. For example, if ’LU’ is a binary attribute,

where a value of 1 indicates the presence of an LU and 0 its absence, then a 1-1 match of

a LU in two worked-out examples is significant, whereas a 0-0 match has no significance

(since 0 implies that the LU is not present) and must be ignored. Therefore, LU is an

asymmetric binary attribute. The most commonly used distance function is Euclidean

distance, although it is meaningful only when data is measurable and its magnitude is

significant. Euclidean distance between 2 data points x and y of dimension n is measured

as

d(x, y) =

√√√√ n∑
j=1

(xj−yj)2 (4.1)
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Figure 4.3: Distance between task T and examples el, esusing number of LUs as magni-
tude - not an appropriate distance measure for ERS

where n = length of the vectors greatly depends on the length of the vectors being com-

pared (Markov & Larose, 2007). For example, if a task T and two worked-out examples

es (small) and el(large) are compared based on the number of concepts covered (mag-

nitude), then d(T,el) will be much higher than d(T,es). This could be misleading since

they both could be equally relevant to the LUs of T or example es can even be more

relevant to T than el. Figure 4.3 shows a scenario that suggests that the length of an

example (in terms of LUs covered by it) is not a good measure to compare 2 worked-out

examples or an example with a task.

The dataset extracted by KERE was first proposed to be non-binary and sparse

(Chaturvedi & Ezeife, 2014) (e.g. an example in which LU1 occurs once, LU2 occurs

two times, and LU4 occurs once is represented as [1, 2, 0, 1]). We then normalized these

non-binary values using a TFIDF weighting mechanism (Markov & Larose, 2007) used

commonly in the field of information retrieval so that they fall in the range of 0 and 1. For

example, after normalization, each worked-out example ei is represented as a vector of
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weights ei = [wi1, wi2, . . . win], where each wij , j = 1..n represents the weight assigned to

this example’s LU j. TFIDF uses term frequency (TF) combined with inverse document

frequency (IDF) to compute a weight for every LU contained in a worked-out example.

TF is computed as

TFij = nij (4.2)

where nij is the number of times LU j occurs in example i. IDF for a LU j, is obtained by

dividing the total number of worked-out examples in ERS by the total number of worked-

out examples that contain LU j. Using TF and IDF , TFIDF weight is computed as

wij = TFIDF (cj,ei) = TFij ∗ log
(
N

nj

)
(4.3)

where N is the total number of examples in the database and nj is the number of examples

that contain LU j. To find similarity between vectors of TFIDF weights, ERS chooses

cosine similarity (Markov & Larose, 2007) over Euclidean distance for reasons discussed

above. Cosine similarity between a task solution and worked-out example ei is computed

as

CS(T, ei) =
∑n

j=1(wij ∗ wtj)√∑n
j=1w

2
ij ∗

√∑n
j=1w

2
tj

(4.4)

The dataset was subsequently changed from non-binary to binary since it was ob-

served that there were very few worked-out examples and tasks in ERS’s domain that

had more than one occurrences of LUs (Chaturvedi & Ezeife, 2015b). The most com-

mon similarity functions used with binary data are Jaccard’s coefficient (JC) (Jaccard,

1901) and Hamming distance (Hamming, 1950). JC works best with binary asymmetric

attributes (Pang-Ning et al., 2005) and therefore are more applicable to ERS’s domain

data. Jaccard’s coefficient between two binary vectors x and y is measured as

JC(x, y) = f11
f11 + f01+f01

(4.5)
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where f11 is the frequency of occurrence of 1 and 1 in the corresponding bits of x and y,

f01 is the frequency of occurrence of 0 and 1 in the corresponding bits of x and y and f10

is the frequency of occurrence of 1 and 0 in the corresponding bits of x and y. Here, f01

and f10 represent the non-matching attribute pairs. For example, if x = [1, 0, 0, 1] and

y = [1, 0, 1, 0], then JC(x, y) = 1/3 . Hamming distance HD is also used with binary

data and is defined as the number of bits that are different in two binary vectors x and

y measured as

HD(x, y) = f01 + f10
f11 + f01+f01 + f00

(4.6)

For example, HD(x, y) = 1/2. In section 5.3, we compare the performance of our

proposed algorithm that finds the nearest neighbors of each task with all our worked-out

examples using both JC and HD values to further justify our choice of using JC over HD

and other similarity functions.

4.3.2 GREPD: Generate Relevant Examples and Predict Difficulty of

a task

Knowledge customization of ERS started its journey by building and implementing an

algorithm called GREPD 3 (Generate Relevant Examples and Predict Difficulty of a task)

(Chaturvedi & Ezeife, 2014) that takes as input the (transformed) vector representation

of all worked-out examples and tasks solutions in ERS’s domain (this transformation into

vectors is done by KERE algorithm of KE module), and then uses k-nearest neighbor

algorithm (defined in section 2.1.2.1) to output the list of worked-out examples closest to

the current task and predict the difficulty level of the task. Each worked-out example ei

and task solution transformed by KERE is represented as a vector of LUs LU1 to LUn

(where n = total number of LUs in ERS). For example, if n = 10 (the first 10 LUs in

table 3.1 3.1) and worked-out example et is given as {int a; float b; scanf("%d", &a);

scanf(“%f”, &b);}, then et ’s vector representation is [1, 1, 0, 0, 0, 0, 0, 0, 0, 2]. GREPD

then transforms these into vectors of TFIDF weights 4.3, which takes both local (TF

calculates weights locally, taking into account a specific LU and worked-out example)
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worked-out example / task solution
E1 int a;

scanf("%d", &a);
E16 int a,b,c;

c = a*b;
printf("c = %d \n", c);

T8 int a, b, c;
int sum, product;
scanf("%d%d%d", &a, &b, &c);
sum = a+b+c;
product = a*b*c;
printf("Sum = %d and product = %d ", sum, product);
(a) Task solution T8 and worked-out examples E1 and E16

LU1 LU2 LU3 LU4 LU5 LU6 LU7 LU8 LU9 LU10 LU11
T8 0.23 0.23 0.76 0.76 3.04 0 1.52 1.01 0.34 0.61 0.76
E1 0.23 0.23 0 0 0 0 0 0 0.34 0.61 0
E16 0.23 0.23 0.76 0.76 0 0 0 1.01 0.34 0 0

(b) TFIDF weights for task T8 and examples E1 and E16

Table 4.3: Task solution T8 and worked-out examples E1 and E16 used to demonstrate
algorithm GREPD (Chaturvedi & Ezeife, 2014)

and global information on worked-out examples (IDF computes the weights globally).

Table 4.4a shows a task solution (T8) and two worked-out examples (E1 and E16) and

table 4.4b shows their vector representation using TFIDF weights.

To break any ties between same or similar (<= 0.05) cosine similarity values, GREPD

uses a new formula called modified cosine method (MCS) that multiplies the cosine value

(equation 4.4) to the number of matching LUs between the worked-out example and task

solution (we call it TR for tie resolution) and is computed as equation 4.7.

MCS(T, ei) = CS(T, ei) ∗ TR (4.7)

It sorts the MCST values in ascending order and stores the top k of them in a list

L and then uses a voting mechanism to classify tasks as difficult or easy, as shown in

algorithm 3.
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Algorithm 3 GREPD : Generate Relevant Examples and Predict Difficulty of a task
Input:
1. LU−EX[m,n], where each m = vector representing a worked-out example, n = total
number of LUs in the domain
2. LU−T : vector of size n representing a task solution T
4. k : integer specifying the number of neighbors used in k-nn
5. DL : vector of size m of actual class labels for each example in ERS (E for easy / D
for difficult) as given by experts
Other variables
MCST : One-dimensional array of size 25, to store the modified cosine similarity (MCS)
values between CM_T and every example in CM_EX.
Output
1. Compute TFIDF weights for each 1 .. m worked-out example given in LU−EX and
for task T given as LUT

2. Compute modified cosine similarity (MCST ) between task T and each 1..m worked-
out example
3. Sort the MCST values computed in step 2 in ascending order and store top k of them
in L1.
4. If the number of examples in L1 with difficulty level of ‘E’ is greater than number of
examples with difficulty level of ‘D’, then classify task T represented by CM_T as ‘E’;
otherwise classify it as ‘D’.

4.3.2.1 Limitations of GREPD

GREPD suffers from several limitations, which motivated us to improve upon it and

propose a modified GREPD (MGREPD) that overcomes these limitations. Limitations

of GREPD are:

1. Type of data used: Each worked-out example or task solution in GREPD is repre-

sented as a vector of continuous values - one for each LU, where each value repre-

sents the total number of times that LU occurs in it. ERS is an ITS based on the

pedagogy of EBL (Example-based learning), in which students study worked-out

examples to learn the domain and apply it to succeed in the assigned tasks. There-

fore, the worked-out examples used in the domain of ERS are designed in such a

way that a LU does not occur multiple times in them. This motivated us to change

the type of domain data from continuous to binary and asymmetric, and change

the similarity function from cosine similarity to Jaccard’s coefficient (equation 4.5).
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2. The actual class labels used in the k-nn algorithm of GREPD were manually given

by experts for each worked-out example. MGREPD defines an algorithm that finds

the difficulty level of each worked-out example.

4.3.3 MGREPD (Modified method to Generate Relevant Examples and

Predict Difficulty of a task)

MGREPD (Algorithm 8) is designed to overcome the limitations of GREPD that was

proposed in an earlier work done towards this thesis (Chaturvedi & Ezeife, 2014). Sim-

ilar to GREPD, it uses k-nn classification algorithm to find the neighboring worked-out

examples of each task. It takes as input m binary vectors (each of size n) representing

m worked-out examples in ERS (LU_EX) , a vector LU_T of size n that stores the LUs

of a domain task solution, an integer value k (for the number of neighbors) and a matrix

DL that stores the actual difficulty level (DL) of each worked-out example (DL is used

as the class label attribute). MGREPD uses a simple algorithm called findDL (algorithm

4) to assign a difficulty level DL to each worked-out example as ’E’ for easy and ’D’ for

difficult. Algorithm findDL uses the expert knowledge stored in ERS’s domain model to

derive the value for DL. ERS’s domain experts provide a list of LUs in ascending order

of difficulty such that LU1 represents the simplest LU while LU50 has a higher level of

difficulty and LU100 has even higher level of difficulty than LU50 4. These LUs are then

partitioned into 2 disjoint sets of simple (S) and complex (C) LUs based on material

difficulty. Algorithm findDL determines if a worked-out example is of difficulty level E

or D using 2 factors:

1. highestId: Id of the highest LU covered by an example. Each worked-out example

consists of one or more LUs. Since the LUs are arranged in ascending order of

difficulty, highestId of an example can be used to assess its difficulty level. For

example, worked-out example find_area in figure 1.1 has highestId = L11. An

example’s highestId can belong to either set S or C. A worked-out example is

assigned to be difficult (D) if highestId belongs to set C. Otherwise, if highestId

belongs to set S, then a second factor (number of LUs contained in it) is assessed.
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Algorithm 4 findDL: compute actual class label (difficulty level E/D of examples)
Input:
LU−EXi: binary vector of size n for LUs present (1) or not (0) in worked-out example i
Global variables (domain model accessible to findDL):
1.LUs partitioned by expert as simple S / complex C, based on material difficulty
2.Threshold value thresh (thresh is assumed to be 1/3 of the total number of LUs in
ERS)
Output: DLi: difficulty level of the example: ’E’ for easy and ’D’ for difficult
Method:
***begin of findDL
//This algorithm computes the actual class label (difficulty level of an example)
1. highestIdi =id of the highest LU in LU−EXi

2. numLUi =total number of LUs present in LU−EXi

3. DLi is computed as :
// if highestIdi is simple, implying that example i covers only
// simple LUs but the number of LUs needed to understand i
// (indicated by thresh) is high,
// then example i is assigned a ’D’
// (even though it has only simple LUs).
3.1. if highestIdi ∈ {S}

3.1.1. if numLUi < thresh
DLi = ’E’

3.1.2.else
DLi = ’D’

// if highestIdi is complex, then it is
// assigned a ’D’.
3.2. if highestIdi ∈ {C}

DLi = ’D’
***end of findDL

2. numLU : The number of LUs that the worked-out example consists of. For example,

find_area in figure 1.1 has numLU = 7. Domain experts of ERS determine that

worked-out examples who have all LUs belonging to set S can also be assigned a

DL of D, if the worked-out example has ’too many’ LUs in it. For such scenarios,

experts are required to provide a threshold value or formula to ’too many’. This

threshold for marking the difficulty level of the material as provided by experts is

1/3 of the total number of LUs (e.g. if ERS has 24 LUs in its scope, a worked-out

example we that has highestId as LU12 (LU12 belongs to set S) and numLU > 8,

then we is assigned a DL = D (even though all LUs it contains are simple).
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Table 4.4 shows three worked-out examples, their highestId, numLU and difficulty

level DL as assigned by findDL, assuming that the total number of LUs is 26. EDL1 is

assigned E, since all its LUs belong to set S (Simple). EDL2 is assigned D, since the LU

with highestId is LU26 and it belongs to set C (Complex). EDL3 has all LUs as simple

(since its highestId is LU14 and it belongs to S) but it has ’too many’ LUs in it that

exceed the threshold given by experts. Therefore EDL3 is assigned D.

MGREPD (algorithm 8) computes the similarity between a task solution and each

worked-out example using Jaccard’s coefficient (equation 4.5), sorts these JC values and

generates a list l of k examples closest to the task using k_nn (defined in section 2.1.2.1).

It then uses a voting mechanism on l to predict the task’s difficulty level. If the total

number of easy (E) examples in l is greater than the number of difficult (D) ones, then

this task is predicted as easy; otherwise it is predicted as difficult.

4.4 Knowledge Organization in ERS

This module of the proposed ERS system focuses on organizing the list of worked-out

examples in its domain based on the learning units (LU) they contain. The main moti-

vation for proposing and implementing a learning unit based organization of worked-out

examples is to enable ERS to assist students to prepare for final examination, when they

must have completed all tasks and must have already learnt all the learning units. Typi-

cally, ERS suggests worked-out examples for the current task that a student is assigned.

If students are looking to study worked-out examples at the end (meaning that these ex-

amples are not sought for any particular task), then the KO module will group all those

worked-out examples that have related LUs into a single cluster (as opposed to traditional

lesson-wise organization). For example, ERS’s cluster for domain1 (C programming) that

has arrays in it, will also have for-loops in it (ERS experts assume that most C codes that

use one-dimensional arrays tend to use simple for loops and those with two-dimensional

arrays tend to use nested-for loops).

ERS uses k-means clustering algorithm (algorithm 1) to cluster its resources but mod-

ifies the important steps of this algorithm to suit its functionality. It treats the problem
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Worked-out example highestId numLU DL
EDL1:
Find the area of a
triangle, given its base
and height.

#include <stdio.h>
int main(){
float base, height;
float area_of_triangle;
printf("Enter the values for base and
height:");
scanf("%f%f", &base, &height);
area_of_triangle = 0.5 * base * height;
printf("Area = %.2f\n",
area_of_triangle);
}

LU11 (S) 7 E

EDL2:
Write function
definition for a
function fraction that
takes 2 integers as
input, and returns
their fractional value
numera-
tor/denominator.

float fraction(int numerator, int
denominator){
return (float) numerator / denominator;
}

LU26 (C) 2 D

EDL3:
Write C code to input
integers a and b and
print the following
results: a+b,
a+b-(a+b), a<b, a<b
&& a+b-(a+b)

#include <stdio.h>
int main(){
int a, b, result1, result2, result3, result4;
printf("Enter 2 integers:");
scanf("%d%d", &a, &b);
result1 = a + b;
result2 = a + b - (a + b);
result3 = a < b;
result4 = result3 && result2;
printf ("Result1 = %d \n", result1);
printf ("Result2 = %d \n", result2);
printf ("Result3 = %d \n", result3);
printf ("Result4 = %d \n", result4);
}

LU14 (S) 9 D

Table 4.4: Difficulty level DL assigned to three worked-out examples by findDL
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Algorithm 5 MGREPD : Modified algorithm to Generate Relevant Examples and Pre-
dict Difficulty of a task
Input:
1. LU−EX: size m * n, each row m is a binary vector representing a worked-out example
of ERS, n = total number of LUs
2. LU−T : binary vector of size n LUs (present (1) or not (0)) for task T
3. k : integer specifying the number of neighbors used in k-nn
4. DL : vector of size m of actual class labels for each example in ERS;
each class label is of type char (E for easy / D for difficult) computed using algorithm 7
(findDL)
Other Variables:
JCT : One-dimensional array of size n, to store the Jaccard’s coefficient JCT between
LU−T and each example in LU−EX
Output:
1. Listrelevant: List of k examples most relevant to task T
2. Predicted difficulty level of task T as E or D
Method:
***begin of MGREPD
1. Compute Jaccard’s coefficient JCT between LU−T and each row of LU−EX using
equation 4.2.
2. Sort the JCT values computed in step 1 in ascending order and store the top k of
them in Listrelevant

(e.g. Listrelevant=[2, 4, 1])
3. for each worked-out example ei in Listrelevant

DL(ei) = findDL(ei)
DL stores the difficulty level of ei as ’E’ or ’D’.

countE = number of examples in Listrelevant with DL = E
countD = number of examples in Listrelevant with DL = D

4. if countE > countD, then
Predicted difficulty level of task T = ‘E’;

else
Predicted difficulty level of task T = ‘D’;

***end of MGREPD
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of organizing worked-out examples into coherent groups or clusters as a problem of clus-

tering binary datasets. There are existing algorithms that cluster binary symmetric data

efficiently but do not consider the asymmetric nature of data (as required by ERS’s do-

main data). For example, Tao Li (2005) proposed a general framework for clustering

binary data, in which they cluster both data and their features simultaneously using

matrix approximation. They initialize k-means exactly as in Algorithm 1 by randomly

picking initial cluster centroids, but recompute the centroids (step 2.2 of Algorithm 1) us-

ing an alternating optimization method that minimizes the approximation error between

original clusters and the recomputed ones. Their algorithm works well with symmetric bi-

nary data that is not too sparse, unlike the data used in this research. Similarly, Ordonez

(2003) proposed a modified k-means algorithm called Incremental k-means for symmetric

sparse binary data. Incremental k-means uses Euclidean distance as the distance mea-

sure, and therefore suffers from the flaws described in figure 4.3. The initialization step of

Incremental k_means uses estimation maximization (EM) algorithm (Markov & Larose,

2007) to compute the initial set of cluster centroids but uses sum of euclidean distances to

recompute centroids (step 2.2 of Algorithm 1). The proposed KO algorithm implemented

for ERS uses not only the local information available to clusters (similar to k-means) but

also global information on domain data as explained in the following section.

4.4.1 KOM16: Proposed Knowledge Organization algorithm for ERS

The proposed algorithm KOM16 (Knowledge organization using Modified steps 1 and 2.2

of k-means 1) uses k-means as its basis but with 2 important modifications - (1) step 1 of

k-means (algorithm 1) is modified to choose a set of initial centroids using knowledge of

the local neighborhood. To find each successive initial centroid, ERS chooses the example

that is farthest away from any of the already picked centroids. This guarantees that the

initial set of centroids is well-separated. Section 4.4.1.1 presents this step as algorithm

7 (create_initial_centroids). (2) step 2.2 of k-means (algorithm 1) is customized to

recompute centroids for binary data. Conventional methods such as computing the mean

of all cluster members do not work well with binary data (Pang-Ning et al., 2005). Mode,

instead of mean is commonly used for categorical attributes including binary attributes
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Algorithm 6 KOM16 (Modified steps 1 and 2.2 of k-means)
Input: dataset ∂ of size m X n (m data points, each with n attributes), k (number of
clusters)
Output: k clusters
Method:
**** begin of KOM16
1. Choose k data points from ∂ as initial centroids using Algorithm 7 (cre-
ate_initial_centroids)
2. repeat until convergence

2.1. repeat steps until all m data points are exhausted
2.1.1. assign point x to its closest centroid using Jaccard’s similarity (equation

4.5)
2.2. recompute the centroid of each cluster using Algorithm 8 (recompute_centroids)

**** end of KOM16

but is not useful in the example dataset used in our research. Section 4.4.1.2 proposes a

novel algorithm called recompute_centroids (algorithm 8) to recompute centroid bit for

each LU to either 1 or 0, depending on the global relevance of the LU, in addition to

mode, which is a local property of the cluster.

Definition 6: Data point: A data point is a binary vector of size n, representing

a worked-out example or a task solution in ERS, where n is the total number of LUs in

the domain of ERS.

For example, worked-out example find_area shown in figure 1.1 can be represented

as a data point [1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], assuming

n = 25.

4.4.1.1 Neighborhood-sensitive choice of initial centroids (modified step 1 of

k-means1)

Definition 7: Similarity vector : Similarity vector sv between a data point e and

all data points in a set S is defined to be a vector of size q, where q = number of data

points in S . Each element of sv stores the Jaccard’s similarity coefficient JC (equation

4.5) between e and each data point in S. Both e and data points in S must belong to the

same domain and must have the same number of features.

For example, let q = 3, e = 1010, S = { s1: 1001, s2: 1101, s3: 0110}, sv =[0.5, 0.25,

0.33]

81



www.manaraa.com

The choice of initial centroids impacts the number of iterations required to get the

final clusters by k-means algorithms. Keeping in mind the primary goal of organizing

worked-out examples into clusters based on the LUs they consist of, ERS chooses as ini-

tial centroids those data points (or worked-out examples (section4.4.1)) that consist of

LUs that are very different conceptually, implying that they should be placed in different

clusters. With this rationale, we choose a farthest-neighbor approach (Pang-Ning et al.,

2005) to pick the initial set of centroids. KOM16 chooses the first centroid randomly.

Then, for each successive centroid, the worked-out example that is farthest away from

any of the already chosen initial centroids is chosen using Jaccard’s coefficient (equa-

tion 4.5). This guarantees that the initial set of centroid is well-separated. Algorithm

7 (create_initial_centroids) that describes this method picks the first worked-out ex-

ample as the first initial centroid (initial−centroid1). Then it uses JC to generate the

similarity vector sv (section 4.4.1.1) between initial−centroid1 and all other worked-

out examples in ERS’s domain. The worked-out example that has the least similarity

value in sv (and therefore the farthest neighbor of initial−centroid1) is chosen as the

next centroid (initial−centroid2). To find the third centroid (and the remaining ones),

create_initial_centroid finds the LUs that are absent in the already chosen centroids

(initial−centroid1 and initial−centroid2) and sets those bits to 1 in a temporary vector

called temp - we call each bit of temp as µij (jth bit of vector i) as defined in equation 4.3.

Conceptually, temp stores all LUs not already covered by the existing initial centroids.

Thus, temp is a good representative of the information on LUs covered by all the already

chosen initial centroids.

µij = 1, if ∀x ∈ {initial−centroids}, l = #{initial−centroids},
l∑

j=1
xj < (l −

l∑
j=1

xj)

= 0, otherwise (4.8)

For example, if initial−centroid1 = [ 0 1 0 0 0 1] and initial−centroid2 = [1 0 0 0

0 1], then temp vector = [ 0 0 1 1 1 0]. Next, it computes sv between temp and the
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Algorithm 7 create_initial_centroids (modified step 1 of k-means)
Input : binary matrix ∂ of m rows and n columns (each row of ∂ represents an example;
each column of ∂ represents a LU in the example) ,
desired number of clusters k
Output: matrix initial−centroid of k rows and n columns
Method:
***begin of create_initial_centroids
1. add first row in ∂ to initial−centroid[1]—- each initial centroid is a vector of n 1s and
0s
2. compute similarity vector sv between initial−centroid[1] and ∂ using JC (equation
4.2).
3. find the example that has least similarity value in sv and add that as the next centroid
to initial−centroid[2].
4. initialize z to 3.
5. repeat until desired number of clusters k is achieved (until z=k)

5.1 ∂ = ∂ - {rows already stored in initial−centroid}
5.2 compute temp by assigning each bit µij of temp to 1 or 0 using equation 4.3.
5.3 compute similarity vector sv between temp and all rows in ∂ using equation 4.2.
5.4 find the example that has least similarity value in sv and pick that as

initial−centroid[z]; increment z
***end of create_initial_centroids

remaining examples in E to choose the example with the least similarity value as the next

initial−centroid. This process is repeated until the desired number of clusters is reached.

4.4.1.2 Recomputing centroids for binary data (modified step 2.1 of k-

means1)

Step 2.2 of k-means (Algorithm 2 1) recomputes the mean of all clusters to update the set

of centroids, if necessary. For categorical attributes including binary ones, mode (instead

of mean) of all clusters is commonly used to update centroids (Pang-Ning et al., 2005).

Mode of an attribute refers to the value that occurs most often. For example, let cluster

c created from an iteration i of KOM16 (Algorithm 6) has 7 data points in it, where each

data point has 26 LUs as its features. If the first feature LU1 for cluster c has values

{1, 1, 0, 0, 1, 0, 1} for the 7 data points, then its mode is 1, since the number of 1s is

more than the number of 0s. Therefore, the updated centroid’s bit for LU1 is assigned a

value of 1. Conceptually, this implies that LU1 is a good representative for this cluster.

As this example illustrates, LUs that are contained in very few worked-out examples

in the entire domain will suffer a bias, if mode is used to recompute centroid bits. For
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instance, in the above example, if feature LU26 for cluster c has values {0,0,0,1,1,0,1},

then using the mode method, centroid bit for LU26= 0. But, if the total number of

worked-out examples in ERS’s domain with learning unit LU26 is just 4, then cluster c

has 3 out of the 4 worked-out examples that ERS has with LU26, and therefore, LU26

should be marked as a good representative of cluster c and its centroid bit should be

assigned a value of 1 (instead of 0). We propose a novel algorithm recompute_centroids

(algorithm 8) that uses a smart technique to assign a value of 1 to the new centroid bit

in 2 situations: (1) when the mode is 1 (2) when the mode is 0 but the presence of that

LU is more relevant globally. Algorithm 5 recomputes centroids by first calculating the

mode of feature LUi, for all worked-out examples in its cluster. If the mode is 1 for an

attribute LUi, then it is considered a good representative for the cluster and its bit is

set to 1. If mode is 0, then the frequency of occurrence of attribute LUi, in the entire

database (αi) is determined and used to find the remaining number of worked examples

with LUi in them (residual). If the number of times LUi appears in cluster c is at least a

certain threshold number of the remaining examples (residual), then the new centroid’s

bit for LUi is assigned a value of 1. After experimenting with different threshold values,

we chose a value of 30%.

4.5 ERS : algorithm and an example application

This section presents the main ERS algorithm and how it integrates the modules of

knowledge extraction, customization and organization. It also includes an example that

runs through each of these modules.

4.5.1 The ERS algorithm

The ERS_main algorithm calls the core algorithms for each of its 3 components KE, KO

and KC as shown in Algorithm 9. Section 4.5.2 demonstrates an example application of

ERS_main.
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Algorithm 8 recompute_centroids (modified step 2.2 of k_means)
Input: initial_centroids of k rows and n columns, example dataset of m rows and n
columns E, k clusters, threshold
Output: k new_centroids
Method:
***begin of recompute_centroids
1. repeat for each cluster k

1.1. repeat for each attribute i of k
1.1.1. calculate its mode of all members of cluster k
Let ones = number of 1s; zeros = number of 0s

mode = 1, if ones > zeros

= −1, otherwise

1.1.2. if mode is equal to 1,
1.1.2.1. assign new_centroid’s bit i to 1

1.1.3. else
// αi is the total number of examples in E that have i=1 in them
1.1.3.1.residual = (αi − ones),
// cluster has at least threshold number of examples in E with LU i

1.1.4. if ones >= residual ∗ threshold,
1.1.4.1. assign new_centroid’s bit i to 1

1.1.5. else
1.1.5.1. assign new_centroid’s bit i to 0

***end of recompute_centroids

Algorithm 9 ERS_main
Input: Worked-out Examples E, Task Solutions T, Learning Units (LU) and their regular
expressions RE, Task Tq
Output:
1. All worked-out examples in E and task solutions in T transformed into binary vectors
of size n, where n is the total number of LUs in ERS’s domain
2. List of most relevant examples for Tq
3. Predicted difficulty level of Tq
4. Worked-out examples organized into different clusters based on the LUs they consist
of
Method:
***begin of ERS_main
1. Call algorithm KERE of knowledge extraction (KE) module to create the learning
unit binary matrix LU_TE (also referred to as ∂) from regular expressions and examples
and task solutions.
2. Call algorithm KOM16 of Knowledge Organization (KO) module to define clusters of
examples and tasks in the database.
3. Call algorithm MGREPD of Knowledge Customization (KC) module to select the
most relevant list of examples for task Tq.
***end of ERS_main
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L1 L2 L3 L4 L5
datatypes variable assignment arithmetic

expression
- simple

arithmetic
expression

-
compound

L6 L7 L8 L9 L10 L11
printf -
messages

only

printf -
format

specifiers
only

printf -
mixed

scanf -
single
input

scanf -
multiple
inputs

relational
expression

L12 L13 L14 L15 L16 L17
logical

expression
relational
logical

arithmetic
relational
logical

expression

simple
while

simple for if/else

Table 4.5: Learning units L1 - L17 defined for example 4.5.2

4.5.2 An example application of the proposed ERS system

Example 4.5.2 : Given the domain model, show how an ERS system extracts knowledge

using KE, organizes all the existing examples into groups using KO, given k = 2, and

mines the examples to generate a customized list for students attempting task T1E using

KC.

Domain model (subset of ERS’s domain D1) :

1. Learning Units : Let number of LUs in domain n = 17 as shown table 4.5.

2. Worked-out examples: E1, E2, E3, E4, E5 as shown in table 4.6.

3. Tasks and their solution: T1E and its solution shown in table 4.6. For simplicity,

there is only one task in the scope of this domain.

Solution of example 4.5.2 : Steps 1 - 4 of algorithm ERS_main (algorithm 9) are exe-

cuted as follows:

• Step 1: KE: knowledge extraction: The core algorithm of this component is

KERE (algorithm 22).

– Input
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Example Id Problem definition Solution
E1 Write a statement to

calculate temperature
in Fahrenheit, given
temperature in Celcius

fahrenheit = 9 / 5 * celcius
+ 32;

E2 Write statements to
multiply and print 2
integers

c = a*b;
printf("c = %d \n", c);

E3 Write a for loop that
prints all alternate
integers from 1 to n,
where n = positive
integer given as user
input. So it prints 1,
3, 5, 7 and so on.

for(i = 1; i < n; i= i + 2)
{
printf("%d\n", i);
}

E4 Write an expression to
test the following : age
is between 18 and 21
(inclusive).

(age>=18 && age <=21)

E5 Write an if statement
to test the following :
age is between 18 and
21 (inclusive). If
condition is true, print
"Eligible", otherwise
print "Not eligible".

if (age>=18 && age
<=21) printf("Eligible");
else
printf("Not eligible");

Task T1E Write statements to
find and print the last
digit of an integer x.

x = 123;
last_digit = x % 10;
printf("%d", last_digit);

Table 4.6: Worked-out examples and Task solution used in example 4.5.2
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17
E1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
E2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
E3 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0
E4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
E5 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1

Table 4.7: dataset ∂ : 5 * 17 matrix to represent table 2’s examples and their LUs (defined
in table 4.5)

∗ set of all LUs, let n=#LUs (n = 17 for example 4.5.2)

∗ REs for each LU (REs for all LUs are not shown here. Some RE are listed

in table 4.24.2)

∗ Worked-out examples. For example, TEsoln(E1) = “fahrenheit = 9 / 5 *

celcius + 32;”

– Method

∗ KERE is applied to the worked-out examples in table 4.6 to obtain 5 binary

vectors of size 17 (one for each worked-out example). For convenience,

these 5 vectors are converted to a 5 * 17 binary matrix. KERE iterates

through each of the 17 LUs to find a matching pattern in TEsoln(E1).

If a matching pattern is found for an LU l, then a 1 is assigned to the

row corresponding to E1 and column l of LU−TE (LU−TE(E1, l)= 1),

otherwise LU−TE(E1, l)= 0. Row 1 of table 4.7 is assigned a 1 for columns

3 and 5, since example E1 matches RE for LUs assignment and arithmetic

expresion-compound. Similarly example E2 of table 4.6 is translated to

row 2 of table 4.7. It assigns 1 to columns 3, 4 and 8 indicating that

E2 matches REs for LUs assignment, arithmetic expression - simple and

printf - mixed. We call the resulting Boolean matrix as ∂.

– Output

∗ 5 * 17 Boolean matrix ∂ shown in table 4.7.

• Step 2: KO: Knowledge Organization: The core algorithm of this component

is KOM16 (algorithm 3).
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– Inputs :

∗ dataset ∂ (table 4.7)

∗ desired number of clusters k = 2 and

– Method

∗ Algorithm create_initial_centroids of KOM16 finds the initial set of clus-

ter centroids for dataset ∂ in table 4.7 as {E1, E4}. It selects E1 as the

first initial centroid. It then uses JC (equation 4.5) to find similarity with

examples E2, E3, E4 and E5 as 0.25, 0.1667, 0 and 0. Therefore, exam-

ple E4 that is the first most dissimilar (or farthest) example from E1 is

selected as the next initial cluster centroid. Since the desired number of

clusters is 2, create_initial_centroids stops here.

∗ Following the rest of the steps of KOM16, examples E1, E2 and E3 are

assigned to one group with E1 as the cluster centroid and E4 and E5

are assigned to group 2 with E4 as the cluster centroid. The algorithm

converges in 2 steps but the cluster assignment remains the same in both

the steps. The final cluster1 represents LUs {assignment, arithmetic ex-

pression - simple, arithmetic expression - compound, printf, relational ex-

pression, for loop}, whereas cluster 2 represents {relational expression,

relational-logical combined, if/else}.

– Output

∗ Cluster 1: {E1, E2, E3}

∗ Cluster 2: {E4, E5}

• Step 3: KC: Knowledge Customization : The core algorithm of this compo-

nent is MGREPD (algorithm 5).

– Inputs:

∗ dataset ∂ (table 4.7)

∗ k = 3,
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∗ DL evaluated using algorithm 4 (findDL). DL for the examples in table

4.6 are found to be {’E’, ’E’, ’D’, ’E’, ’E’}.

∗ Task T1E is transformed using algorithm KERE into a binary vector called

LU−TE = [0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0], which indicates the presence

of LUs 3 (assignment), 4 (arithmetic expression - simple) and 6 (printf -

format specifiers only) in T1E.

– Method:

∗ MGREPD finds the JC between LU−TE and each row in ∂ as [0.25, 0.5,

0.33, 0, 0.1667], sorts these values in ascending order and stores the top

k of them in Listrelevant. Thus Listrelevant for task T1E = [E2, E3, E1].

This implies that students working on task T1E will see examples E2, E3

and E1 as the most useful examples to succeed in task T1E.

∗ Since the difficulty level of 2 (out of 3) examples E2 and E1 in T1’s neigh-

borhood is ’E’, T1E is assigned a difficulty level of ’E’ (easy task).

– Output

∗ students working on task T1E will see examples E2, E3 and E1 as most

useful examples to complete task T1E.

∗ T1E is predicted as ’Easy’.

4.6 Chapter 4 Overview

Chapter 4 presents the core architecture of the proposed ITS called Example Recommen-

dation System (ERS). It defines and proposes algorithms for the main components of

ERS. The first component called knowledge extraction is considered to be the backbone

of ERS. It’s main algorithm KERE extracts LUs from given worked-out examples and

task solutions in ERS’s domain and represents them in an efficient way that enables ERS

to be easily extendable to any new domain. Existing systems such as NavEx (Yudelson

& Brusilovsky, 2005) generate syntax trees to extract LUs. Their method can validate

the input (in addition to identifying an LU in it), but they do so at the cost of speed of
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operations, memory space demands and user inconvenience. RE are implemented using

finite automaton based techniques such as Non-Deterministic Finite Automata (NFA)

(Cox, 2007), which takes O(n) time to match an input string of length n. In a CFG,

the overhead per input symbol in the input string is high, since it parses through a set

of grammar rules to validate the structure of the input string. The memory required to

match a input string to a RE is constant, whereas a CFG will require memory propor-

tional to the depth of the syntax tree generated. Clearly, RE are as effective as syntax

trees by making a simple assumption that worked-out examples and task solution don’t

need to be validated.

Knowledge customization module of ERS proposes algorithm MGREPD to find the

k closest worked-out examples for each assigned task so that students do not have to

search for such examples themselves, while attempting a task. MGREPD also predicts

the difficulty level (DL) of each assigned task (DL is used in chapter 7 as a key feature

in the prediction of student performance). The third component of ERS is knowledge

organization (KO) that forms clusters of existing worked-out examples that are more

meaningful in terms of the domain LUs. KO proposes novel ways to modify the two

important steps of standard k-means clustering algorithm (choosing initial centroids and

computing new centroids when required) such that the modifications cater to binary and

asymmetric data. At the end, this chapter presents a trace of a working example that

defines the domain model of ERS and runs through each component (KE, KC and KO)

of ERS to produce the desired results.
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Chapter 5

Evaluation of individual ERS

components

This chapter evaluates the data mining algorithms proposed and applied in ERS’s com-

ponents (evaluation method EM1 as given in section 3.5.1). Section 5.1 highlights the

datasets created and used by ERS. Section 5.2 presents an experimental analysis of the

knowledge extraction component (described in chapter 4 section 4.1), section 5.3 presents

the results and analysis of the knowledge customization module of ERS (described in

chapter 4 section 4.3) and section 5.4 presents experiments proposed for the knowledge

organization module of ERS (described in chapter 4 section 4.4).

5.1 ERS Datasets

There are two domains that ERS uses in its experiments (section 3.7). The datasets used

in domain D1 and D2 are given below:

5.1.1 Dataset for Domain D1 (Programming in C)

• Total number of Worked-out examples = 250

– Each worked-out example has the following format <ExampleId, Problem

Definition, Solution>. For example, <E111, ’Write an assignment state-
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ment to add 2 numbers a and b and store the result in aplusb’, ’aplusb

= a + b;’>. Table 5.1a shows 2 sample worked-out examples for do-

main D1. A full list of all 250 worked-out examples can be found at

https://ritu106.cs.uwindsor.ca/example_list/ (Chaturvedi et al., 2015b) by

logging in as bob / bobrocks.

• Total number of Tasks = 31

– Each task has the following format <TaskId, Problem Definition, Solution,

Scoring rule>. Scoring rule for a task defines marks assigned to each LU

of the task. For example, <TE1, ’Write statements to find and print the

last digit of an integer x.’, ’x = 123; last_digit = x % 10; printf("%d",

last_digit);’, {LU3:1, LU4:2, LU7:1}>. A full list of all tasks can be found at

https://ritu106.cs.uwindsor.ca/lessons/ (Chaturvedi et al., 2015b) by logging

in as bob / bobrocks.

• Total number of LUs = 27

– Each LU has the following format <LUid, LUname, Description>. For

example, <LU3, ’Assignment’, ’The assignment operator ’=’ in C allows

the programmer to set a variable’s value’>. Table 3.1 in section 3.7.1

has the list of all LUs in D1. A full list of all LUs can be found at

https://ritu106.cs.uwindsor.ca/concept_map/ (Chaturvedi et al., 2015b) by

logging in as bob / bobrocks (the website refers to LUs as concepts).

5.1.2 Dataset for Domain D2 (Programming in Miranda)

• Total number of Worked-out examples = 101

– Each worked-out example has the following format <ExampleId, Problem

Definition, Solution>. For example, <E22 , ’Write a program called p5

which takes two lists of numbers as input and which outputs the list with

the largest value in the first position. If the lists have the same value in
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the first position, then output the first list.’, ’p5 n m = n, if n!0 >= m!0 =

m, if m!0 > n!0’>. Table 5.1b shows 2 other sample worked-out examples

for domain D2. A full list of all 101 worked-out examples can be found at

http://ritu100.cs.uwindsor.ca/#/admin/manageExamples (Chaturvedi et al.,

2015a) by logging in as rituch/rituch.

• Total number of Tasks = 12

– Each task has the following format <TaskId, Problem Definition, Solution,

Scoring rule>. Scoring rule for a task defines marks assigned to each LU of

the task. For example, <TE1, ’Write a program called t2 which outputs the

string “hello”’, ’t2 = “hello”, {LU55: 2}>. A full list of all tasks can be found

at http://ritu100.cs.uwindsor.ca/#/admin/manageTasks (Chaturvedi et al.,

2015a) by logging in as rituch/rituch.

• Total number of LUs = 16

– Each LU in domain D2 has the following format <LIid, LUname>. For exam-

ple, <LU43, ’Empty List’>. Table 3.2 in section 3.7.2 has the list of all LUs in

D2. A full list of all LUs can be found at http://ritu100.cs.uwindsor.ca/#/learningUnits

(Chaturvedi et al., 2015a) by logging in as rituch/rituch.

5.2 Experiment 1 on Knowledge Extraction

This section answers research question RQ1 (chapter 3 section 3.3) on extracting knowl-

edge from ERS’s worked-out examples and task solutions correctly and with ease of ex-

tendibility to other domains. KERE (Knowledge Extraction using Regular Expressions),

as described in section 4.1 identifies the presence of one or more LUs in all those task

solutions and worked-out examples in an ITS domain. Section 5.2.1 demonstrates how it

is easily extendable to a domain that teaches Miranda functional programming language

and also to a non-programming Math domain. Section 5.2.2 validates the correctness of
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Example
Id

Problem
definition

Solution

E1 Write a
statement to
calculate
temperature in
Fahrenheit, given
temperature in
Celcius.

fahrenheit = 9
/ 5 * celcius +
32;

E2 Write statements
to multiply and
print 2 integers.

c = a*b;
printf("c = %d
\n", c);

(a) Sample worked-out examples in domain D1 (Program-
ming in C)

Example
Id

Problem definition Solution

E1 Write a Miranda
program that takes an
integer n finds the sum
of all integers starting

from 1 leading up to and
including n (e.g. sum2 5
= 1 + 2 + 3 + 4 + 5 =

15)

sum2 0 = 0
sum2 n = n +
sum2 n-1

E2 Write a program m4
that divides an integer X
by 5 and then squares it.

m5 x = (x div
5) * (x div 5)

(b) Sample worked-out examples in domain D2 (Programming
in Miranda)

Table 5.1: Sample worked-out examples in domain D1 and D2

KERE by comparing the LUs generated by KERE with LUs generated manually by using

a method called IOC.

5.2.1 Knowledge Extraction extendable to other domains

This section demonstrates the extendibility property of KERE to other domains and

advantages of implementing it for any ITS. Every ITS that automatically extracts LUs

from its resources requires the experts definition of the domain model, similar to KERE

(e.g. LUs, solutions of all tasks and worked-out examples, algorithms for extraction).

What makes ERS’s KERE algorithm standout from other ITS is its simplicity, efficiency

and extendibility to other domains with significantly less efforts by domain experts. In

response to research question (section 3.3), this thesis asserts that it is not required by an

ITS to verify syntactic relationships between the LUs of task solutions and worked-out

examples in order to extract the LUs (as is done by existing systems such as (Yudelson

& Brusilovsky, 2005; Mokbel et al., 2013; Hosseini & Brusilovsky, 2014)) - it just needs

to identify the existence of a LU in the task solution or worked-out example. KERE

is designed using this principle, which makes KERE more easily extendable to any new

domain. The following sections 5.2.1.1 and 5.2.1.2 illustrate this property of KERE for a

non-programming domain and for a different programming domain.
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5.2.1.1 KERE extendable to non-programming domain

KERE’s extendibility to a non-programming domain is illustrated using the following

example (Example 4.1) that uses a small domain model for Math with a very limited

scope of adding and subtracting fractions.

Example 4.1: Given a domain modelD1math for Math with a limited scope that consists

of adding and subtracting fractions with common denominators, show how KERE

transforms each task solution and worked-out examples in the domain to a binary

vector of size n, where n is the total number of LUs in D1math.

Input Domain model of D1math

Learning Units in the scope of D1math (all of type string)

Lm1: numerator (e.g. 3)

Lm2: denominator (e.g. /5)

Lm3: fraction of type string (e.g. 3
5)

Lm4 : add (e.g. 1 / 2 + 3 / 2)

Lm5: sub (e.g. 1 / 2 - 3 / 2)

Lm6: mixed (e.g. 4 / 2 - 3 / 2 + 1 / 2).

Regular Expressions for LUs in D1math

Lm1(numerator): \d+

Lm2(denominator) : \/\d+

Lm3(fraction) : \d+(\/\d+)?

Lm4(add) : \d+(\/\d+)?(\+\d+(\/\d+)?)

Lm5(sub) : \d+(\/\d+)?(\-\d+(\/\d+)?)

Lm6(add−Sub−many) : \d+(\/\d+)?[\-|\+]\d+(\/\d+)?([\-|\+]\d+(\/\d+)?)+}

For example, any string with 1 or more digits in it will be identified as a

numerator, whereas a denominator is identified by a / followed by any number

of digits.
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Worked-out examples: Each example here has a problem definition and its so-

lution.

1. Em1: {Problem Definition: Represent ’3 out of 4 slices’ as a fraction; Solution:

3 / 4}

2. Em2: {Problem Definition: Add 3 / 4 + 2 / 4; Solution: 3 / 4 + 2 / 4 = 5 /

4}

3. Em3: {Problem Definition: Subtract 3 / 4 - 2 / 4; Solution: 3 / 4 - 2 / 4 = 1

/ 4}

4. Em4: {Problem Definition: Calculate 3 / 6 + 2 / 6 - 1 / 6; Solution: 3 / 6 +

2 / 6 - 1 / 6 = 4 / 6}

Tasks:

Tm1: Calculate 2 / 6 + 1 / 6 + 1 / 6.

Task solutions

Tm1Soln: 2 / 6 + 1 / 6 + 1 / 6 = 4 / 6

Solution Example 4.1: Each worked-out example in Em1..Em4 and task solution

Tm1Soln is transformed into a binary vector of size 6, where a value of 1 indicates the

presence of an LU in it and 0 its absence. . For each example/task et, KERE iterates

through the regular expressions for each of the 6 LUs to find a matching pattern in

the solution of et. If a matching pattern is found for an LU l, then a 1 is assigned to

the column l of LU−TE (i.e. LU−TE(l)= 1), otherwise LU−TE(l)= 0. For example,

for Em1, KERE finds a matching pattern for Lm1(numerator), Lm2(denominator)

and Lm3(fraction). Similarly, the LUs for examples Em2..Em4 and task Tm are

extracted as {Em2 : {Lm1, Lm2, Lm3}, Em3 : {Lm1, Lm2, Lm4}, Em4 : {Lm1, Lm2,

Lm5}, Tm : {Lm1, Lm2, Lm3}}.

Output of Example 4.1:

Em1: [1,1,1,0,0,0]

Em2: [1,1,1,0,0,0]
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Em3: [1,1,0,1,0,0]

Em4: [1,1,0,0,1,0]

Tm1Soln: [1,1,1,0,0,0]

5.2.1.2 KERE extendable to a programming language from a different

paradigm

KERE’s extendibility is illustrated in this section using a programming language called

Miranda. The motivation for choosing Miranda is 2-fold: (1) Miranda is a functional

programming language, as opposed to C, which is a procedural language (Hughes, 1989).

In procedural languages such as C, programmers focus on how to perform tasks or imple-

ment algorithms, whereas in functional languages such as Miranda, programmers focus

on what information is desired (instead of how to achieve it). Such differences make the

structure of these 2 languages (C and Miranda) very different structurally and this is

what motivated to choose Miranda to validate KERE’s process of knowledge extraction.

(2) Miranda is taught to Undergraduate Computer Science students as a core course in

the University of Windsor and its resources were readily available to create ERS’s domain

model (Frost, 2015).

KERE is implemented for Miranda with its domain model D2 (section 5.1) consisting

of (1) 16 learning units (LU) as shown in table 3.2, (2) RE for each LU (RE for LU48,

which identifies recursion in Miranda is given as [a-z]+.*\([a-z]+\:[a-z]+\).*), (3) 101

worked-out examples and (4) 12 tasks (and their solutions). Table 5.2 illustrates four

Miranda worked examples, solution of a task T r1 and LUs extracted by KERE.

5.2.2 Validation of KERE in extracting the correct LUs

In order to answer RQ1 (section 3.3) and validate the correctness of the LUs extracted,

this thesis compares the results of algorithm KERE of knowledge extraction in ERS with

a manual extraction method called Item-Objective Congruency (IOC) used commonly in

the area of Content Validity (Rovinelli & Hambleton, 1976; Li & Chen, 2009). The IOC

method collects and analyses judgments from several experts on the relevance of an item
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Question / Task Worked-out examples /
Task Solution

LU’s extracted by KERE

Er1 Write a Miranda program
that takes an integer n
finds the sum of all
integers starting from 1
leading up to and including
n (e.g. sum2 5 = 1 + 2 +
3 + 4 + 5 = 15)

sum2 0 = 0
sum2 n = n + sum2 n-1

LU1, LU11, LU12

Er2 Write a program m4 that
divides an integer X by 5
and then squares it.

m5 x = (x div 5) * (x
div 5)

LU1, LU11

Er3 Write Miranda program
called p1 which outputs the
list [(42,"Ford Prefect")]

p1 = [(42,"Ford
Prefect")]

LU11, LU14, LU15

Er4 Write a program called m7
that uses list
comprehension to double
every number in the input
list l.

m7 l = [x*2 | x<-l] LU1, LU7, LU8, LU11,
LU13

T r1Soln Write a recursive program
called p8 which takes a list
of lists of numbers as input
and which returns a list
containing the first number
from each of the lists on
the input; e.g. p8 [[12,7,3],
[4,5,2],[6,8,23]] => [12,4,6]

p8 [] = []
p8 (x:xs) = x!0 : p8 xs

LU4, LU8, LU10, LU12

Table 5.2: Miranda worked-out examples and Task solution and their LUs extracted by
KERE
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for an instructional resource (e.g. relevance of a LU in a worked-out example). This study

uses the term LU, in place of item in IOC and worked-out examples and task solutions

in place of instructional resources. Typically, experts give their judgment for each LU i

in worked-out example or task solution k as a rating of 1 (if they strongly believe that k

must consist of LU i), -1 (if they strongly believe that k must not consist of LU i) and 0

(if they are not sure). It then compiles all the expert ratings to compute a validity index

value for each LU i in worked-out example k as shown in equation 2.1 and re-written here

for convenience as

Iik =
(n− 1)

∑q
j=1Xijk + n

∑q
j=1Xijk −

∑q
j=1Xijk

2(n− 1)q

where n = total number of LUs, q = total number of experts and Xijk= the rating (1,

0, -1) of LU i on worked-out example k by expert j. Steps used in this thesis for the

process of collection and analysis of the LUs extracted by IOC and comparing them with

KERE’s extraction of LUs for worked-out examples and task solutions in ERS’s domain

are:

Step 1: Collect experts ratings on LUs of worked-out examples and task solutions in

ERS. ERS uses five experts for each of its domains (Domain D1: C Programming

and Domain D2: Miranda Programming). Experts for both the domain are Under-

graduate Computer Science students. Experts are requested to give their judgment

or rating on whether a LU i meets the objectives of worked-out example k. Fig-

ure 5.1 shows a sample collection sheet with 2 worked-out examples (IDs 1 and 2)

given to domain experts of Miranda. Learning units of ERS’s domain D2 (Miranda

Programming) can be found in table 3.2.

Step 2: Experts ratings from step 1 are compiled to compute the validity index Iik of LU

i for worked-out example k using equation 2.1. For example, if the five experts give

their ratings for LU51 (PRIMITIVE_TYPE) of worked-out example Er3 (figure

5.1) as [1, -1, 1, -1, 1] , then Iik = 0.2, where k = 1 and i= LU51.
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ID question solution
ARITHMETI
C_OPERAT FOLDR MAP

EMPTY_LIS
T

COMPOSIT
ION

IF_STATEM
ENT

1
Write a miranda function to find 
the sum of elements in a list.

my_sum []=0
my_sum (x:xs) = x + 
my_sum xs

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

2

Write a miranda program that 
takes an integer n finds the sum 
of all integers starting from 1 
leading upto and including n (e.g. 
sum2 5 = 1 + 2 + 3 + 4 + 5 = 15)

sum2 0 = 0
sum2 n = n + sum2 (n-1)

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Agree 
Disagree
Not sure

Figure 5.1: Sample sheet given to experts to collect their ratings on LUs for worked-out
examples and task solutions - only 2 examples and 4 (out of 15) LUs are shown

Step 3: IOC method requires domain experts of ERS to provide a threshold to agree

with experts ratings. ERS uses a threshold of 0.60 for Domain D2 to indicate that

if the validity index for a LU i of a worked-out example k is greater than 0.6, then

it is assumed that experts agree that worked-out example k definitely consists of

LU i. Using this threshold value, a Boolean matrix LU_by_experts of size m * n

(where m = total number of worked-out examples and n = total number of LUs

in ERS’s domain) is constructed, that stores 1 at location LU_by_experts[k, i], if

Iik > 0.6 and 0 otherwise. For example, figure 5.2 shows experts ratings for worked-

out example Er3 from ERS’s domain D2 with 3 LUs (LU51, LU54 and LU55). All

five experts agree on LU54 and LU55 but two of the five experts strongly believe

that LU51 does not meet the objectives of worked-out example E3 (and therefore

they give a rating of -1). The validity index for LU54 and LU55 is 1, but the index

for LU51 is 0.2. Therefore, worked-out example Er3 in figure 5.3 has a 0 for LU51

but 1 for LUs LU54 and LU55.

Step 4: This step uses a simple matching coefficient (SMC) to match the LUs extracted

by KERE with the LUs extracted by experts using the IOC method explained in

step 3. Algorithm KERE extracts the LUs for each worked-out example (or task

solution) and and stores it in a binary vector of size n, where n is the total number

of LUs in ERS’s domain 2.We access, for convenience, each row of LU_by_experts
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Figure 5.2: Experts ratings for worked-out example Er3 from ERS’s domain D2

MU1 MU2 MU3 MU4 MU5 MU6 MU7 MU8 MU9 MU10 MU11 MU12 MU13 MU14 MU15

E1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0

E2 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

E3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

E4 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

E5 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

Figure 5.3: Boolean Matrix LU_by_experts created for worked-out example Er3 and
others

representing a worked-out example as a binary vector of size n. The equation to

determine the simple matching coefficient (SMC) (Pang-Ning et al., 2005) between

two binary vectors of the same size is given in equation 5.1.

SMC(x, y) = f11 + f00
f11 + f00 + f01+f01

(5.1)

where f11is the frequency of occurrence of 1 and 1 in the corresponding bits of x

and y. Similarly, f01is the frequency of occurrence of 0 and 1, f10 is the frequency of

occurrence of 1 and 0 and f00 is the frequency of occurrence of 0 and 0 matches in the

corresponding bits of x and y. In SMC, both f11 and f00 are considered as matching

attribute pairs, whereas f01 and f10 represent the non-matching attribute pairs. For ex-

ample, SMC([10011], [10101]) = 3/5 = 0.6. Results achieved using SMC between LUs

extracted by KERE and IOC for domain D1 are shown in figure 5.4. Similarly, results

achieved using SMC between LUs extracted by KERE and IOC for domain D2 are shown

in figure 5.5. KERE extracts LUs for domain D1 with an 81% accuracy, indicating that

consistency of agreement among experts is 81%. For domain D2, KERE extracts LUs for

domain D1 with a 95% accuracy, indicating that experts agree very strongly with the LUs

extracted by KERE. A low value of accuracy for the similarity between IOC experts and
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KERE’s LUs extracted for domain D1 can be attributed to the nature of conventional

programming languages such as C. Sometimes, C code written for worked-out examples

may require LUs that do not directly meet the learning objectives of the example, but

are required to complete the C program. For example, LUs extracted by KERE for

worked-out example EDL2 (table 4.4) are LU4 (arithmetic expression) and LU26 (func-

tion definition). EDL2 asks to write the function definition for a function called fraction

that takes 2 integers as input, and returns their fractional value numerator/denominator

is written as

float fraction(int numerator, int denominator)

{

return (float) numerator / denominator;

}

Experts may not agree with LU4, since the objective of EDL2 is to write function defi-

nition and not to teach arithmetic expressions. Similarly, many worked-out examples in

ERS’s domain D1 have LU2 (variables) and LU6 (print constant messages) in them, only

because they support the other LUs in meeting the objectives of worked-out examples

or task solutions. KERE identifies them in the given worked-out example and extracts

them as LUs but experts don’t. The only constraint with domain D2 (Miranda Pro-

gramming) is the presence of symbols such as < that can be interpreted in more than

one ways. For example, worked-out example Er4 in table 5.2 uses list comprehension to

double every number in the input list (m7 l = [x*2 | x <- l]). KERE identifies the symbol

< as a relational operator and therefore extracts LU53 incorrectly, although <- in list

comprehension means membership.

5.2.3 Complexity of KERE

Core of the knowledge extraction algorithm KERE is regular expression analysis. Identi-

fying a LU in a given string of length w using regular expressions can be done in linear

time, linear in the length of the string w (Cox, 2007; Dubé & Feeley, 2000). This is a
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Figure 5.4: Comparing domain D1’s LUs extracted by KERE and those extracted man-
ually by IOC method for correctness

Figure 5.5: Comparing domain D2’s LUs extracted by KERE and those extracted man-
ually by IOC method for correctness
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clear improvement over methods such as syntax trees used by existing systems, in which

identifying an LU takes cubic complexity.

5.3 Experiment 2 on Knowledge Customization

Experiment 2 is an attempt to partially answer research question RQ2 (section 3.3) by val-

idating customization algorithms GREPD and MGREPD described in section 4.3. Both

these algorithms build a k-nearest neighbor prediction model using different similarity

functions that are observed to be applicable to ERS datasets. This section describes the

steps required to build a prediction model and the methods used to validate it.

Given a set of data records represented as (x,y) where x is a set of features, prediction

is the task of mapping the feature set x into a special feature y, where y is termed as the

class label. In general, steps to build a prediction model are:

Step 1: Divide data into 2 subsets: training and test. Training dataset is used to build

the model. Test dataset is used to test the model. Records in both the subsets have

the x values, and the y values (these y values are referred to as actual class labels

in step 3).

Step 2: Build the model by applying a prediction algorithm on the training dataset.

Step 3: Apply the model to test dataset - their actual class labels are compared to the

predicted ones to evaluate the model.

Step 4: Use the model to classify unseen records and predict their y values.

Each time a record is tested for the class that it predicts, it is compared with its actual

class label and a confusion matrix is generated. A confusion matrix is a table that allows

visualization of the performance of a classification algorithm. It gives a count of data

records or instances that are correctly and incorrectly predicted by the algorithm. In

general, for a 2-class problem (such as the one used in this study), labels are termed as

positive / negative; the original class labels are referred to as actual and those deter-

mined by the classification algorithm are termed as predicted. Figure 5.6 shows a generic
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Figure 5.6: generic confusion matrix for a binary class label (positive / negative)

Figure 5.7: Performance measures for classification algorithms used to predict student
performance

confusion matrix in which each column represents the total number of records in a pre-

dicted class, and each row represents the total number of records in an actual class. The

classification algorithm then, assigns to each record or instance one of the following :

• True Positive (TP): actually positive - also predicted as positive.

• True Negative (TN): actually negative - also predicted as negative.

• False Positive (FP): actually negative - but predicted incorrectly as positive.

• False Negative (FN): actually positive - but predicted incorrectly as negative.

Performance measures such as accuracy, recall and f_measure (Markov & Larose,

2007) that typically evaluate prediction algorithms such as k-nn can be computed using

confusion matrix as shown in figure 5.7.

There are different methods of evaluating prediction models such as cross validation

and holdout methods (Payam et al., 2009). MGREPD uses leave-one-out cross validation
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(LOOCV) to evaluate its model. In each iteration of LOOCV, one sample (e.g. ith

worked-out example) from the complete dataset (of size N) is considered to be the test

data (test) and the rest of the (N-1) samples are taken as training data. MGREPD

predicts the difficulty level of test data using the class labels of training data. The actual

class labels (difficulty level) of all N examples are computed using findDL (algorithm 4).

At the end, each example’s actual class label is compared against its predicted one to find

the total number of correct predictions. To evaluate MGREPD, leave-one-out method

of cross-validation (LOOCV) (Payam et al., 2009) and measures such as accuracy and

f-score are used (Markov & Larose, 2007). Accuracy A measures the ability of the model

to match the actual value of the class label with its predicted one (e.g. "Easy" predicted

as "Easy" and "Difficult" predicted as "Difficult") as shown in figure 5.7. Accuracy is not

a meaningful measure when dealing with class labels that are imbalanced or when one of

the class labels is uncommon. For example, let us assume that 10 out of 100 examples

are actually labeled as true or "Easy" and 90 are labeled as false or "Difficult". In a

worse-case scenario, even if the classifier predicts only 1 (out of 10) "Easy" examples as

"Easy", the accuracy computed as 91/100 = 91% is very high. Other measures that are

used to evaluate classifiers are precision (defined as #actual true values predicted as true

/ total number of values predicted as true) and recall (defined as #actual true values

predicted as true / total number of true values). Assuming that all easy examples are

true and difficult ones are false, in this example, precision=1/10=10% and recall = 1 /

1=100%. Most classifiers achieve a trade-off between precision and recall, since it is very

challenging to keep both the measures high. F-score is a combined measure that assesses

this trade-off between precision and recall (figure 5.7). A comparative performance

evaluation of MGREPD (that uses JC) against GREPD (that uses cosine and MCS) and

other distance measures is shown in figures 5.8 and 5.9 for different values of k (where

k = total number of neighbors). An analysis of these performance values validates our

claim that Euclidean distance is certainly not a good measure for finding the closeness of

worked-out examples with assigned tasks of any ITS. As the graph in figure 5.8 shows,

MGREPD using JC performs the best with 93% when the total number of neighbors is

3. This implies that MGREPD’s model correctly predicts the class labels for 93% of its
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k=3 k=5 k=7 k=9

Euc_Dis 28 24 24 20

Cosine 80 88 88 88

MCS 84 88 88 88

JC 93 92 92 92
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Accuracy using different similarity measures

Figure 5.8: Comparison of Accuracy of MGREPD using JC and other similarity measures
such as Cosine similarity

test data records. MGREPD also performs with better accuracy than GREPD for other

values of k (Chaturvedi & Ezeife, 2014). Measure f-score for MGREPD is found to be

as high as 91% for k=1. For k between 2 and 9, it was found to be in the range of 86 -

88%. The algorithm did not perform as well as GREPD for higher values of k (k>=7),

as shown in figure 5.9.

Figures 5.8 and 5.9 show results we published in our earlier work on finding a task’s

k closest neighbors using a dataset ` of 70 worked-out examples, 5 task solutions and 11

learning units from domain D1 on programming in C (Chaturvedi & Ezeife, 2014). We

increased this dataset to a larger dataset L from two domains D1 and D2 with a total of

351 worked-out examples, 43 tasks and 43 learning units (section 5.1). Experiments with

ERS show that accuracy and f_score values on applying MGREPD to larger dataset L

are as high as 96% for k = 5 neighbors (compared to 93% for k = 3 neighbors when

applied to the smaller dataset `). These results are shown in figures 5.10, 5.12, 5.11 and

5.13.
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k=3 k=5 k=7 k=9

Cosine 80 88 88 88

MCS 85 88 88 89

JC 88 87 86 86
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Figure 5.9: Comparison of f_score of MGREPD using JC and other similarity measures
such as Cosine similarity

Using the larger dataset L, we also compare results of MGREPD with yet another

distance function called hamming distance, applicable to binary data, similar to Jaccard’s

coefficient. Hamming distance between 2 binary vectors is defined as the total number

of bits in which they differ (equation 4.6). A comparative evaluation of performance of

MGREPD using JC and hamming distance as similarity functions is shown in figures

5.10, 5.12, 5.11 and 5.13. These graphs indicate that MGREPD that uses JC performs

better than hamming distance for both domains D1 and D2. This can be attributed to

the fact that JC ignores the 0-0 matches and therefore works best with asymmetric binary

data, similar to that of ERS, whereas hamming distance gives equal importance to both

1-1 and 0-0 matches by not counting any of them.

These graphs also indicate that MGREPD performs better with domain D2 (Pro-

gramming in Miranda), as opposed to D1 (Programming in C), which can be attributed

to the nature of functional languages such as Miranda compared to imperative languages

such as C. Programs in C are written with a focus on the order of execution of the state-

109



www.manaraa.com

65

75

85

95

105

115

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
C
C
U
R
A
C
Y

Number of neighbors

Comparing accuracy of MGREPD for domain D1 using 
Jaccard's coefficient and Hamming Distance

Jaccard's coefficient JC

 Hamming Distance

Figure 5.10: Comparison of accuracy of Jaccard’s coefficient verses Hamming Distance
for domain D1
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Figure 5.12: Comparison of accuracy of Jaccard’s coefficient verses Hamming Distance
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Figure 5.13: Comparison of f_score of Jaccard’s coefficient verses Hamming Distance for
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ments. Therefore, worked-out examples written in C tend to have LUs that may not be

direct prerequisties or outcomes of other LUs in them. Miranda programs, on the other

hand, are written with a focus on what needs to be done to obtain results (instead of

how). They do not rely on states of other statements. Therefore, LUs extracted from

worked-out examples written in Miranda are strongly related to each other. This results

in more accurate JC values when comparing D2’s worked-out examples and tasks.

5.3.1 Knowledge Customization extendable to other domains

As section 4.3 explains, knowledge customization module of ERS requires two algorithms:

MGREPD and findDL. MGREPD, excluding findDL, is domain-independent, as long as

all the worked-out examples and task solutions in its domain are represented as vectors

of binary asymmetric values, where 1 indicates the presence of an LU in them and 0 the

absence. Algorithm findDL, on the other hand, requires domain information from experts

such as LUs partitioned by expert as simple S / complex C4.

The core idea of MGERPD is also implemented in a completely different research area

in a prior work that we did (Chaturvedi et al., 2015c), in which we propose an algorithm

called PEP (Predicting Emotions in Players) that predicts emotions in players based

solely on game design features that are represented as asymmetric binary data. We apply

k-nn classification algorithm on a reduced set of binary features to find a game g’s nearest

neighbors and their expected emotions. The expected emotions of these neighbors are

then used to predict emotions triggered by g.

5.3.2 Complexity of GREPD and MGREPD

Both GREPD and MGREPD algorithms for knowledge customization use k nearest neigh-

bor (k-nn) algorithm and therefore their complexity is defined to be the complexity of

k-nn. Complexity to find k-nearest neighbors of a task t from a set ofm number of worked-

out examples, each of size n (where n is the total number of LUs) is O(m ∗n) +O(m ∗ k)

(Markov & Larose, 2007), where complexity to compute distance from task t to all m

examples is O(m ∗ n) and complexity to find the k closest examples is O(m ∗ k).
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5.4 Experiment 3 on Knowledge Organization

Knowledge Organization (KO) (section 4.4) forms clusters of worked-out examples so

that all examples belonging to a single cluster have related LUs. Algorithm KOM16

of KO modifies standard k-means clustering algorithm to accommodate the nature of

ERS’s data derived by its first component KE. Clustering can be evaluated using both

internal and external validation measures (also known as indices). Internal validity index

(such as Dunn’s index) is based on the information intrinsic to the data alone, whereas

external validity index (such as f_score) is based on previous information about data.

Internal validity index are preferred when the class of data used in clustering is not

known in advance (Maulik & Bandyopadhyay, 2002). Such indices are useful in validating

the algorithms written for clustering, comparing them with others and in choosing the

number of clusters. This thesis chooses to evaluate KOM16 using internal validity indices

such as Dunn’s index because (1) the objective of this experiment is to compare the

performance of KOM16 with standard k-means for binary data (2) ERS does not have

any pre-defined classes or clusters that can be used to compare the results of KOM16

for external validation. Dunn’s index (Dunn, 1974) for each cluster partition, given the

distance d(x, y) between two data points x and y is defined as

Dunn = min1≤i≤k{min1≤j≤k,i6=j{
δ(Di, Dj)

max1≤r≤k{4(Dr)}}} (5.2)

δ(Di, Dj) = minx∈Di,y∈Dj{d(x, y)}

4(Dr) = maxx,y∈Dr{d(x, y)}

In equation 5.2, δ represents the inter-cluster distance between 2 clusters Di and

Dj . 4Dr measures the intra-cluster distances in cluster Dr. Larger values of Dunn’s

index indicate good clusters, implying high intra-cluster similarity and low inter-cluster
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similarity. The value of k that maximizes Dunn is then chosen as the optimal number of

clusters.

This section experiments with algorithm KOM16 proposed in section 4.4 on ERS’s

dataset of worked-out examples (WOE dataset) and compares its cluster formation with

clusters formed by standard k-means algorithm (algorithm 1 in chapter 2) using different

parameters such as Dunn’s index, total number of iterations to converge and interpretabil-

ity. Table 5.3 shows results of 4 different experiments done with ERS dataset. This table

indicates that Dunn’s index is as high as 0.81 when KOM16 is used for cluster formation

of ERS dataset as compared to standard k-means that gives a Dunn’s index of 0.51. The

optimal number of clusters formed by KOM16 for ERS is found to be 6, when Dunn’s

index is the highest (Dunn’s index = 0.81, when k = 6). We compute the Dunn’s index

index for all values of k from 1 to 15, and find that k=6 has the highest value.

In order to validate the proposed clustering algorithm KOM16 further, we implement

it on a benchmark zoo dataset (Bache & Lichman, 2013) and compare its results with

standard k-means. Zoo dataset (Bache & Lichman, 2013), available at the UX Irvine

Machine Learning Repository (uci.kdd) consists of 17 binary attributes and 1 categorical

attribute. We transformed the non-binary attribute into 4 different binary attributes.

Therefore, zoo dataset in our experiments consists of 101 instances (or records) of 21

binary attributes each (attributes such as hair, feathers, eggs and tail). There are 7 pre-

defined classes of animals in the zoo dataset and the total number of animals in each class

are 41, 20, 5, 13, 3, 8 and 10. For example, animals (frog, newt, toad) classify as class

5, whereas pitviper, seasnake, slowworm, tortoise, tuatara classify as class 3. KOM16,

when applied to this zoo dataset, results in Dunn’s index = 1.41 for 5 clusters (instead

of 7). This can be attributed to the fact that classes 3 and 5 have very few instances in

them (class 3 has just 5 animals in it and class 5 has 3 animals from a total of 101) and

therefore KOM16 is not able to identify them as separate clusters. Figure 5.14 shows the

Dunn’s index computed for all values of k from 1 to 15 for both datasets (ERS and Zoo).

We also validate the cluster formation in zoo dataset by KOM16 against its actual

pre-defined classes (Bache & Lichman, 2013) using external validation measures such as

accuracy and f_score and use the results as a benchmark for ERS (since both ERS and zoo
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Case Algorithm Number of
clusters

Number of
iterations

to
converge

Dunn’s Index

1
Modified Step1

Modified Step6 ( 6
KOM16)

6 5 0.802

2
Modified Step1
Standard Step6

6 3 0.802

3
Standard Step1
Modified Step6

6 5 0.601

4
Standard Step1
Standard Step6
(Algorithm 1)

6 6 0.512

Table 5.3: Comparative Analysis of proposed modified k-means with standard k-means -
ERS dataset

data are binary). A confusion matrix is generally created to compute such measures. A

confusion matrix is a table that allows visualization of the performance of a classification

algorithm 5.6. Each column of the matrix represents the instances in a predicted class,

and each row represents the instances in an actual class. The confusion matrix in table

5.4 shows the total number of zoo classes predicted by KOM16 that match / mismatch

the actual pre-defined ones. For example, row 1 in table 5.4 indicates that there are 36

(out of 41 animals in zoo dataset) that are predicted correctly as class 1, whereas there

are 2 animals that are actually class 1 but are predicted incorrectly as class 2. Similarly,

there are 3 animals that actually class 1 but are predicted incorrectly as class 5. Accuracy

(given as total number of correct predictions / total number of predictions) for KOM16

is found to be 77% and f_score is computed as 79%, whereas f_score using standard

k-means is computed to be 74%. Details on computing accuracy and f-score are given

in section 5.3. This comparison shows that the proposed algorithm KOM16 is a viable

algorithm to cluster data that is asymmetric and binary.

5.4.1 Complexity of KOM16

Complexity of KOM16 is the same as that of standard k-means clustering. Complexity

of KOM16 to organize m number of worked-out examples with n number of LUs in each
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P R E D I C T
class 1 2 3 4 5 6 7

A 1 36 2 0 0 3 0 0
C 2 0 11 9 0 0 0 0
T 3 2 0 0 3 0 0 0
U 4 0 0 0 13 0 0 0
A 5 0 0 0 1 3 0 0
L 6 0 0 0 0 0 8 0

7 0 0 0 1 0 2 7

Table 5.4: Confusion matrix for zoo dataset to compare the actual animal classes with
those predicted by KOM16

2 3 4 5 6 7 8 9 10 11 12

Example 0.6065 0.6071 0.6921 0.7733 0.8021 0.7526 0.6241 0.7246 0.7246 0.7246 0.3863

Zoo 1.0273 1.0761 1.1398 1.4405 0.8827 0.8254 0.8691 0.7889 0.7889 0 0
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Figure 5.14: Validity Indexes for k=1..12 for Zoo and ERS dataset
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is O(I ∗k∗m∗n) (Pang-Ning et al., 2005), where I is the number of iterations required to

converge and k is the number of neighbors. Typically I is a small value and k is a value

much smaller than m, therefore complexity of KOM16 can be considered to be O(m ∗n).

5.5 Chapter 5 Overview

In this chapter, we present experimental analysis and results of each ERS component,

i.e. KE, KC and KO. Algorithm KERE of KE is validated using 2 programming domains

that are from different paradigms (domain D1: C Programming and domain D2: Miranda

programming) on its correctness of extracting LUs from given worked-out examples and

task solutions. It extracts LUs for domain D1 with an 81% accuracy, whereas domain D2

with a more promising 95% accuracy. KC uses k-nearest neighbor classification method

to find a task’s nearest worked-out examples and to predict the difficulty level of the

task. It does so with an accuracy of as high as 93% and f_score of 88%. MGREPD,

the core algorithm of KC, can be applied to any dataset that is binary and asymmetric.

We applied MGREPD to a dataset from a completely different application area that

represents emotions in players when playing a game. MGREPD predicts the emotion in

players with an accuracy of 67% and f_score of 76% (Chaturvedi et al., 2015c). Algorithm

KOM16 of ERS’s knowledge organization module is validated using Dunn’s index as the

internal validity index. High values of Dunn’s index for D1 indicates the formation

of compact and well-separated clusters by KOM16. KOM16 is also implemented on a

benchmark binary dataset Zoo (Bache & Lichman, 2013) to evaluate if the number of

clusters formed by KOM16 are optimal. This is done by comparing these clusters formed

by KOM16 with predefined classes for Zoo as given in UX Irvine Machine Learning

Repository (Bache & Lichman, 2013) to compute an f_score of 79%.
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Chapter 6

Evaluation of ERS as a tutor

This chapter describes and analyses the methods adapted to evaluate ERS as a tutor

(evaluation method EM2 (section 3.5.1)), in order to validate its prime goal of improving

student learning. Assuming that learning directly corresponds to high marks, the main

goal, therefore, is to evaluate if ERS improves the likelihood of students scoring higher

marks in the assigned tasks (ERS’s students are considered successful in a task if they

score a mark of 75 or higher in it). To accomplish this, ERS uses student data from

Winter 2015 and Fall 2015 semesters of an Undergraduate course on C Programming for

beginners, offered as a service course by the School of Computer Science at the University

of Windsor. This course requires students to complete 10 individual assignments (worth

5% each) and a written final exam (worth 50%). Each assignment consists of 2 or more

tasks, which, by definition 3.1, are gradable questions or instructions assigned to students

(e.g. task T1: “There are 2.54 centimeters to 1 inch. Write a C program that asks a user

to enter the value of his/her height in inches and then displays the height in centimeters.”).

Two different scenarios are used to evaluate ERS using student and assignment data.

In scenario 1, the same set of students (e.g. all students registered in Fall 2015) is offered

2 similar groups of assignments. Group I of assignments uses ERS to offer worked-

out examples for its tasks, whereas group II of assignments does not use ERS. Student

performances in these 2 sets of assignments are then analyzed in section 6.1 to find the

group that improves student learning the most. In scenario 2 (section 6.2), performance

of two different groups of students that use the same set of assignments is compared. The
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Figure 6.1: Hierarchy of Assignments and tasks used in evaluation of ERS (Scenario 1)

two groups of students are those who registered in Winter 2015 semester (when students

do not use ERS for assignments) and those who registered in Fall 2015 semester (when

students are required to use ERS).

6.1 Scenario 1: One group of students doing two similar

set of assignments using two different approaches (no

ERS and with ERS)

In this scenario, the required 10 course assignments are divided into 2 different groups -

Group I is named NoExamples and Group II is named WithExamples. Group NoExam-

ples consists of assignments 1, 7, 8, 9 and 10, and as the name suggests, ERS does not

recommend any worked-out example for the tasks in these assignments. Group With-

Examples consists of assignments 2, 3, 4, 5 and 6 and ERS suggests 2 most relevant

worked-out examples for the tasks in these assignments. A complete hierarchy of assign-

ments and tasks used for this scenario is shown in figure 6.1.
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Figure 6.2: Distribution of assignment tasks based on difficulty level

These assignment groups are formed on the basis of 2 criteria (1) Total number of

worked-out examples: ERS has many more worked-out examples on the LUs that meet

learning objectives of tasks in assignments belonging to Group II (Group WithExamples),

as opposed to group I (Group NoExamples) (2) Total number of difficult tasks that the

assignments consist of : a task is deemed "D" (for "Difficult") or "E" (for "Easy") by

algorithm MGREPD of the knowledge customization module of ERS described in chapter

4 (Algorithm 5). It may seem that tasks from assignments in Group NoExamples are more

difficult than tasks from assignments in group WithExamples because they are assigned

in the latter part of the course and consist of LUs that possibly are of higher difficult level.

But experiments show that there is no such bias in the 2 groups and the total number of

difficult tasks in the two groups is comparable. The graph in figure 6.2 shows that the

number of difficult tasks in Group NoExamples is 19, whereas group WithExamples has

21 difficult tasks.

In order to answer research question RQ2 (section 3.3), we claim that students who

follow ERS’s recommendation of studying the most relevant examples suggested for an
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assigned task, before attempting the task, will succeed in the task with high marks. In

order to validate our claim, we compare and analyze average student marks in each as-

signment and compute the improvement in student learning when they use the suggested

worked-out examples.

We observe through experiments that Group II (WithExamples) outperforms GroupI

(NoExamples) by 26% in the average obtained by students. Figure 6.3 illustrates that

the class average for assignments in group WithExamples is 89%, whereas the average

for assignments in group NoExamples is just a 73%. Figure 6.4 shows that the average

student marks for all assignments in group WithExamples is higher than 85% for four

out of five assignments in the group. On the other hand, average marks for assignments

in Group NoExamples is between 65% and 75%. We also compute the improvement

in learning for ten students in the course as 17% by using assignment marks of these

individual students for groups NoExamples and WithExamples as shown in equation 6.1

(S = total number of students). A similar formula has been used in an existing research

developed for a web application programming course (Goreva et al., 2007). It is worth

mentioning here that experiments to compute improvement require individual student

marks. This required by REB (Research Ethics Board) of the University of Windsor to

seek student consent to participate in this study. Out of 35 students registered in the

fall term, only ten consented to participate and therefore we computed the improvement

factor for these ten students.

improvement =
∑S

s=1Avg−WithExamples−Avg−NoExamples
S

(6.1)

6.1.1 Statistical significance

A two-sample t-test is performed to find the statistical significance of the above results

for using the average scores for Scenario 1. There are 2 samples for scenario 1: sample 1

is for group WithExamples and sample 2 is for group NoExamples. The following steps

are taken to accomplish this:
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1. Identify the null hypothesis and alternative hypothesis. If µ1and µ2 are the averages

of the two samples used, then the null hypothesis is that µ1= µ2. The alternate

hypothesis for this scenario is chosen to be µ1> µ2, meaning that the average

of students for tasks in the group WithExamples is higher than tasks in group

NoExamples.

2. Establish the level of significance (α value). This indicates the probability that the

difference in the average values of the 2 samples is due to chance (or not). We

choose α to be 0.01, indicating our belief that there is less than 0.01 probability

that µ1> µ2 by chance.

3. Calculate the mean and standard deviation for both the samples. As shown in

section 6.1, µ1= 89 and µ2= 73.

4. Use paired t-test to caculate the t-value: we choose to use a paired t-test because

both samples have the same participants being tested for two different groups of

assignments. The t-value calculated for the two samples in scenario1 is found to be

3.41. Comparing this value with t-table values, we find that probability that the

samples are different by chance is only 0.001. This proves that the results for this

scenario are statistically significant.

6.2 Scenario 2: Two different group of students doing the

same set of assignments using two different approaches

(no ERS and with ERS)

This scenario, as shown in figure 6.5, uses student data from 2 different semesters (Winter

2015 and Fall 2015) of students registered in Programming C course. Students from

both terms were assigned the same tasks from assignments 2, 3, 4 ,5 and 6 from group

WithExamples. Students from Winter 2015 were not required to use ERS (and were

not suggested worked-out examples for any task by ERS), but they were informed that

worked-out examples exist and they can use them if they choose to. Students from
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Figure 6.5: Groups of Students and Assignments from group WithExamples used in
evaluation of ERS (Scenario 2)

Fall 2015 were required to use ERS for these five assignments (and were suggested two

worked-out examples for each task assigned to them).

The average student performance for Fall 2015 for this set of assignments is measured

as 89% and is higher than 83% measured for students of Winter 2015, as shown in the

graph in figure 6.6. This is an indication that scenario 2, similar to scenario 1, follows the

same trend that students have a higher likelihood of getting high marks in tasks if they

study the worked-out examples recommended by ERS. This scenario allows us to validate

research question RQ2 (section 3.3) further, that worked-out examples recommended by

ERS contribute in meeting the overall goal of improving student learning.

6.2.1 Statistical significance

Similar to scenario 1, a two-sample t-test is performed to find the statistical significance of

the above results for using the average scores for scenario 2. The results for this scenario
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Figure 6.6: Average marks for groups Winter 2015 and Fall 2015 in Scenario 2

are not statistically significant, since the probability that the two averages are different

is very high (15%).

6.3 Chapter 6 Overview

This chapter evaluates the educational impact of ERS as a tutor. Experiments with

student marks for two controlled scenarios illustrate that students who study worked-out

examples suggested by ERS have a higher likelihood of completing the course with high

marks and thereby improve learning. Although the dataset used is small, the results are

promising and cannot go unnoticed. Increasing the dataset and incorporating external

factors such as students prior knowledge on the subject matter in future can ascertain

the educational impact with a much higher confidence. Student performance in existing

EBL-based ITS (table 2.7) is evaluated based on system usage. For example, NavEx

(Yudelson & Brusilovsky, 2005) counts the frequency of usage of examples for each student

as a measure of his/her learning, and PADS (Li & Chen, 2009) uses the time spent by

students on given tasks as its measure of learning. ERS measures student learning by
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objectively comparing student marks in assigned tasks in different scenarios that are

designed to evaluate ERS in its role of an educator.
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Chapter 7

Evaluation of ERS’s student and

domain features using predictive

mining

This chapter evaluates ERS’s student and domain model features using method EM3

described in section 3.5.1. A key component of ERS is to design a model that can

accurately predict student knowledge on its domain LUs. This chapter uses data mining

to predict student performance in assigned tasks as a measure of evaluating student and

domain model features of an ITS.

7.1 Introduction

For online learning environments, in general, predicting student performance is a function

of two complex and dynamic factors: (1) student learning behavior (e.g. time spent on

a given resource) and (2) their current knowledge in the domain (e.g. marks scored in

a task). Learning behavior is captured from student interaction with the ITS and is

stored in the form of web logs. Student knowledge in any ITS domain is represented

by the marks they score in tasks or tests and is stored in a specific component of the

ITS called student model. In order to build an accurate prediction model, this raw data

from student model and web logs must be engineered carefully and transformed into
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meaningful features. We propose to predict student performance by using features that

measure student knowledge objectively and are better informed about assigned tasks. In

order to accomplish this, ERS is designed with a fine-grained domain and student model.

As described in section 2.2.1, granularity refers to the level of detail that a domain model

component is represented with. ERS’s domain model is designed as a fine-grained model,

in which its domain consists of worked-out examples and task solutions, which are further

subdivided into indivisible learning units (LUs) (e.g. domain D1 consists of worked-out

example E1, which consists of LUs {datatype, printf}). ERS’s student model stores

student knowledge on these learning units (LU) (e.g. student s1 scores 4 out of 6 in LU4

(‘Simple Arithmetic expressions’)) and student learning behavior (e.g. number of visits

to a worked-out example). Pardos et al. (2007) have also proven in their study that finer

the granularity, more accurate is the prediction of student performance. We define the

hypothesis and the rationale behind our prediction model next.

Hypothesis H for predicting student performance :

Success of students is predicted with a high value of accuracy if the features used for

prediction are better informed about the assigned tasks (e.g. difficulty level of the task)

and are measured objectively (e.g. student’s average marks for a suggested worked-out

example).

Rationale:

Raw data, usually, is not in a form suitable for prediction algorithms but deriving or

constructing features from it enables these algorithms to learn (Domingos, 2012). We

claim that if the features used in a prediction algorithm are task-oriented, objective and

student-centric, then the algorithm learns better and predicts student success with a high

value of accuracy.

7.2 Related Works on Predicting Student Performance

Predicting academic performance of students has been a challenging problem for intelli-

gent tutoring systems. None of the existing EBL-based ITS such as NavEx (Yudelson &

128



www.manaraa.com

Brusilovsky, 2005), PADS (Li & Chen, 2009) and others (section 2.2.2) attempt to predict

student performance. There exist non-EBL-based ITS that predict student performance

but they either lack in use of state-of-the-art techniques or in selection of appropriate

features for prediction. Minaei-Bidgoli et al., (2003) in their study of an ITS called

LON-CAPA use web-log features to predict student performance in the final exam with

a prediction accuracy of 87%. Features they use describe students learning behavior such

as total number of correct answers by a student, student’s success at the first attempt

for each task, total number of attempts made in each task to get the correct answer

and total time spent on each task until solved. None of these features measure student

knowledge on LUs or tasks objectively are not good indicators of student performance.

Another drawback of using features for prediction solely based on student interaction

with an ITS is that it may mislead the prediction model (e.g. time to complete a task

will be recorded by the ITS as very high in situations where student starts working on a

task but does not logout after completion. In this scenario, "time to complete the task"

will be recorded as high - an (incorrect) indication to the ITS that the student is strug-

gling with the subject). Thai-Nghe et al., (2010) adapt techniques used in recommender

systems to predict student performance. A recommender system (RS), in general, is an

information filtering method which links users to items (e.g. Netflix recommends movies

to its users) (Mabroukeh, 2010). If there are m users and n items, a RS will arrange

them as an m * n matrix M , such that M(i, j) = 1, if user i likes item j; 0 otherwise.

Typically, many entries in M are missing (e.g. when there is a new user who hasn’t liked

any item yet) and are predicted by RS based on the information of the other existing

users using techniques such as clustering and collaborative filtering (Markov & Larose,

2007). The authors (Thai-Nghe et al., 2010) map students to users and tasks to items in

order to assign a rating to the student-task pairs. A limitation of mapping the problem

of predicting student performance to recommender systems is that prediction in RS is

based on web usage patterns of users, whereas student models in ITS are more concerned

with web content usage (e.g. student’s knowledge on a given task). Shen et al., (2010)

propose a system very similar to that of Minaei-Bidgoli et al., (2003) but they use a finer

level of granularity to extract features specific to each step of a task. Each task is divided
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into several steps by experts and student’s knowledge on each step is predicted. Their

system too, like many others, relies solely on logged features extracted from student’s

interaction with it, instead of student’s current knowledge on the domain. McCuaig and

Baldwin(2012) use a different approach to predict student success in a web-based course.

They do not provide or use any formal assessments such as quiz or exam grades. They

use features such as student’s mean self-confidence for the overall semester (by asking

students to fill a questionnaire each week), total number of active days spent using their

system and the average time spent in doing problem sets (students attempt an ungraded

problem set each week) to predict student success using decision trees. The low value of

prediction accuracy for their method (70%) can be attributed to the subjective nature of

features such as confidence level (entered by the student) and the lack of task-oriented

features. There is no direct measurement of student knowledge either, since the problem

sets they use are ungraded. As indicated above, all the existing methods that predict

student performance suffer from a major limitation - improper feature selection. This

thesis overcomes the above limitations to predict student performance by deriving fea-

tures that are objective and well-informed about the tasks assigned to students and also

well-informed about the resources (such as worked-out examples) that ERS recommends

for each task. Examples of such features include students performance on a task and its

LUs, their knowledge on the worked-out examples that assist in the task, difficulty level

of these examples and so on.

7.3 Proposed Methodology to predict student performance

(PSP)

In order to validate hypothesis H (defined in section 7.1), we map the problem of PSP

to the data mining problem of prediction using task-oriented and objective features.

The student and domain datasets used for prediction are described next followed by the

algorithms used for feature extraction.

Dataset used for PSP
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Figure 7.1: Partial dataset prepared for PSP - 8 rows shown correspond to marks scored
by 8 students in task T14

• Original dataset Sr: PSP uses a student dataset of ten students who were registered

in Fall 2015 in a course on Programming in C for beginners offered by the School of

Computer Science, University of Windsor. Although 35 students registered in Fall

2015, only 10 of them consented to participate in this study. There were 13 tasks

that students were assigned throughout the term. This generated a dataset with

130 instances or records (one for each student per task).

• Simulated dataset Ss: Using the original dataset Sr, additional instances were gen-

erated to create a simulated dataset with 520 instances.

7.3.1 Features selected for PSP and their Extraction algorithms

Nine features are carefully chosen for each student Sid and each task Tid in ERS, in

order to meet the objectives of PSP model. We discard the student Ids since they are not

required for prediction. Figure 7.1 shows the first 8 rows of the dataset prepared for PSP.

Features include {feature f1: Sid’s current overall performance (COP), features f2 and

f3: grades in the worked-out examples suggested by ERS (GSE1 and GSE2) (we use the

top 2 suggested examples in the current research), features f4 and f5: whether student

has visited the suggested examples (VE1 and VE2), features f6 and f7: time spent on the

suggested examples (DurationSE1 and DurationSE2), features f8 and f9: difficulty level

of the suggested examples (Difficulty_LevelSE1 and Difficulty_LevelSE2) .

Features and algorithms used to derive them are listed next.
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1. Feature f1: COP (Current Overall Performance) : Student model of each student

in ERS stores the marks they achieve in each learning unit (LU) in ERS’s domain.

COP is derived by finding the average performance of a student in all the LUs learnt

so far.

2. Feature f2 : GSE1 (Grade in the Suggested Example 1): Algorithm 10 (called

GSE) explains the steps required to derive this feature. ERS students are graded

on assigned tasks and these grades are distributed among the tasks’s LUs. Features

2 and 3 compute the grades students score in worked-out examples using the grades

of their LUs. GSE takes as input (1) the current task Tid’s represented as a binary

vector of n LUs, (2) each worked-out example also represented as a binary vector

of n LUs (GSE stores these vectors as a binary matrix of size m * n, were m is

the total number of worked-out examples) and (3) student Sid’s current scores in

each LU. Step 1 of GSE applies MGREPD (algorithm 5) to find Tid’s k nearest

neighbors (called as Listrelevant) using Jaccard’s Coefficient (JC) as its similarity

function. Step 2 of GSE fetches the LUs of each of the k worked-out examples in

Listrelevant and stores them in E1_LU. For example, if Listrelevant for a given task

TP1 is [EP2, EP4], then E1_LU = [LU1, LU2, LU5], assuming that EP2 consists of

these 3 LUs. Step 3 computes the sum of grades student Sid scores in worked-out

example 1 stored in Listrelevant. For example, GSE1 for student Sid = grade[LU1]

+ grade[LU2 + grade[LU5].

3. Feature f3: GSE 2 (Grade in the Suggested Example 2) is extracted using the same

algorithm GSE and steps used for feature 2. Using the same Listrelevant in step 2,

E2_LU = [LU3, LU5] and GSE2 in step 3 computed for student Sid = grade[LU3]

+ grade[LU5].

4. Feature f4: VE1 (Visited Example 1) is extracted from the weblogs generated by

student interaction with ERS for worked-out example1 in Listrelevant. It indicates

whether a student has visited the suggested example or not.
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5. Feature f5: VE1 (Visited Example 2) is extracted from the weblogs generated by

student interaction with ERS for worked-out example 2 in Listrelevant. It indicates

whether a student has visited the suggested example or not.

6. Feature f6 : DurationSE1 is derived by finding the sum of the time spent (in seconds)

on the worked-out example E1 in Listrelevant. Each time a student visits a page, its

url, date and time is recorded in the web log and stored as a row in table Page of the

relational model. Then the time spent by student Sid each time he/she visits E1

is extracted using a PL/SQL function called timespent_on_example_by_student,

shown in figure 6.2. This function searches for the name of the worked-out ex-

ample in table Page’s url (e.g. if student Sid has browsed example E101 at 2

different times and his data is stored 2 rows in table Page as <7821, Sid , 1843,

’/example/E101’> and <7829, Sid , 43, ’/example/E101’>, then function time-

spent_on_example_by_student will search for rows in Page for Sid with ’E101’ in

their url and add up the time_spent values for those rows.

7. Feature f7 : DurationSE2 is derived in the same way as feature 6 for worked-out

example E2 in Listrelevant.

8. Feature f8: Difficulty_LevelSE1 (Difficulty level of suggested example 1) is derived

using algorithm findDL (algorithm 4) in section 4.3 that assigns a difficulty level of

E (for easy) or D (for difficult) to worked-out example 1 in Listrelevant.

9. Feature f9: Difficulty_LevelSE2 (Difficulty level of suggested example 2) is derived

using algorithm findDL (algorithm 4) in section 4.3.4 that assigns a difficulty level

of E (for easy) or D (for difficult) to worked-out example 2 in Listrelevant (similar

to feature 8).

10. Class label attribute SUCCESS_IN_TASK: SUCCESS_IN_TASK is assigned a

yes, if a students succeeds in the assigned task and no otherwise. It is assumed that

a student succeeds in a given task if he/she has achieved a grade of 75 or higher in

it.
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Algorithm 10 GSE (Grade in the Suggested Example)

Input: 1. task Tid as a binary vector of size n, 1/0 indicating

presence/absence of LU (where n = number of LUs in ERS)

2.LU−EX: binary matrix of size m examples * n LUs:
each row in LU_EX represents a worked-out example
1/0 indicates presence/absence of LU in that row

3. gradesSid : vector of size n that holds student Sid’s current scores
in each LU

Output: grade in suggested examples 1 and 2: GSE1 and GSE2
Other variables: Listrelevant:k examples most relevant to task Tid
Method:
***begin of GSE
1. Find Tid’s nearest 2 neighbors using MGREPD (algorithm 5)(assuming k = 2)

1.1. Compute the similarity between task Tid and each row i

in LU−EX using Jaccard’s coefficient JC4.5

1.2. Sort the JC values computed in step 1.1 in ascending order

and store the corresponding examples of top k (=2) of them in

Listrelevant(lets call them row_E1 and row_E2)

2. Find row_E1’s LUs from ERS’s domain model and store as E1−LU

E1−LU =LUs of worked-out example row_E1

3. Find Sid ’s grade in worked-out example row_E1
If n = number of LUs,

GSE1 =
n∑

i=1
gradeSid[E1−LU [i]], ∀E1−LU [i] = 1

4. Repeat steps 2 and 3 for worked-out example row_E2 to find GSE2
***end of GSE
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H:\PhD\Defense\Figures\Chapter7\timespent_on_example.sql March-14-16 3:03 PM

CREATE OR REPLACE FUNCTION TIMESPENT_ON_EXAMPLE (EXAMPLE EXAMPLES.EXAMPLE_ID%TYPE,
STUDENT PAGE_VISIT.STUDENT_PID%TYPE)

RETURN NUMBER
IS
VTIME_SPENT NUMBER;

BEGIN

SELECT SUM(TIME_SPENT)
INTO VTIME_SPENT
FROM PAGE_VISIT
WHERE PAGE_URL LIKE '%'||EXAMPLE||'%'
AND STUDENT_PID = STUDENT;

RETURN VTIME_SPENT;
END;

-1-

Figure 7.2: PL/SQL script to derive proposed features f6 and f7 listed in section 7.3.1

7.4 Results and analysis of predicting student performance

This section presents the results and analysis of the PSP model built using decision tree

analysis applied to the novel features described in section 7.3.1. The original student

dataset Sr (Section 7.3) generated for the problem of PSP is observed to have two con-

cerns: (1) Sr, obviously is a small dataset with 130 instances (2) the class label attribute

(SUCCESS_IN_TASK) is imbalanced because it contains more of class label ’yes’ (113 in-

stances) as compared to ’no’ (17 instances). Although this is a good indicator that ERS is

an effective tutoring system, in which students succeed in assigned tasks with high scores,

it still creates an undesirable bias for classification algorithms used to predict student per-

formance. In order to overcome these two concerns (small and imbalanced dataset), we

use an existing algorithm called SMOTE (Chawla et al., 2002) to deal with such class im-

balance. SMOTE, (Synthetic Minority Oversampling Technique) (Chawla et al., 2002) is

an over-sampling technique used to overcome the issues of imbalanced datasets by adding

volume to the minority class label, so that the instances of majority and minority class

labels are equally distributed. Although the objective of SMOTE is to balance the class

labels, it does so by adding more samples or records and therefore allow us to add volume

to our otherwise small original dataset. SMOTE adds samples by taking 5 nearest neigh-
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bors (NN) of a minority class sample X. It finds the difference between feature vector

of X and feature vectors of the NN of X, multiplies this difference by a random number

between 0 and 1 and then adds the resulting value to the original value of X. Equation 7.1

represents this idea where X is the original instance/sample; Xnew is the newly generated

sample, XNNi is one of the 5 NN of sample X; δ represents a random number between 0

and 1. For example, if feature vector of X = (6, 4) and one of its 5 NN is XNNi= (4, 3),

then a new sample generated is Xnew = (6, 4) + (2, 1) ∗ 0.5 = (6, 4) + (1, 0.5) = (7, 4.5).

Xnew = X + (XNNi −X) ∗ δ (7.1)

We apply SMOTE to Sr using Weka (Hall et al., 2009), which is an open-source

software that contains tools for data pre-processing, classification (including decision tree

analysis), and other data mining tasks. Figure 7.3 on the following page shows the class

distribution of the original dataset Sr that has 130 rows (or instances as Weka calls them),

with 113 of them having a value of SUCCESS_IN_TASK=yes. Figure 7.4 on the next

page provides the count distribution of the over-sampled and balanced dataset created

by Weka’s SMOTE algorithm. SMOTE not only balances the class labels from 11% to

97% but also increases the number of instances from 130 to 520.

Now that our dataset is balanced and has volume, we describe our prediction model

and compute its performance. Given a set of data records represented as (x,y) where x is

a set of features, prediction is the task of mapping the feature set x into a special feature

y, where y is termed as the class label. The steps used to build a decision tree prediction

model for PSP (also shown in chapter 5 section 5.3) are (1) divide data into 2 subsets:

training and test (2) build the model by applying a prediction algorithm on the training

dataset (3) apply the model to test dataset - their actual class labels are compared to

the predicted ones to evaluate the model (4) use the model to classify unseen records

and predict their y values. The proposed PSP model uses a method called 10-fold cross

validation (Payam et al., 2009), in order to divide its datasets Sr and Ss into training

and test so that their actual class labels can be compared with the predicted ones. Each

iteration takes one of these partitions as test data and the others are used for training
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Figure 7.3: (Imbalanced) Class distribution of the original dataset Sr - class yes has 113
instances; class no has 17 instances

Figure 7.4: (Balanced) Class distribution of data after applying SMOTE - class yes has
264 instances; class no has 256 instances

137



www.manaraa.com

the model. This is repeated 10 times, so that each partition is used for testing only

once. Each time the model predicts a class for records in the test dataset, it is compared

with its actual class label and a confusion matrix is generated. A confusion matrix is a

table that allows visualization of the performance of a classification algorithm. It gives

a count of data records or instances that are correctly or incorrectly predicted by the

algorithm. In general, for a 2-class problem (such as the one used in this study), labels

are termed as positive / negative; the original class labels are referred to as actual and

those determined by the classification algorithm are termed as predicted. Figure 5.6

shows a generic confusion matrix and is reproduced below for convenience. In this figure,

each column represents the total number of records in a predicted class, and each row

represents the total number of records in an actual class. The classification algorithm

then, assigns to each record or instance one of the following :

• True Positive (TP): actually positive - also predicted as positive.

• True Negative (TN): actually negative - also predicted as negative.

• False Positive (FP): actually negative - but predicted incorrectly as positive.

• False Negative (FN): actually positive - but predicted incorrectly as negative.

Performance measures such as accuracy, recall and f_measure (Markov & Larose,

2007) that typically evaluate prediction algorithms such as decision trees can be computed

using confusion matrix as shown in figure 5.7 and shown here again for convenience.
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Tables 7.1 and 7.2 show results of decision tree classification model applied to the

original dataset Sr and to the over-sampled balanced dataset Ss. The total number of

FP (false positives) and FN (false negatives) in a confusion matrix indicate erroneous

results. For example, FP in table 7.1 measures the total number of students whose

success is wrongly predicted by PSP to be yes (although in reality, those students do not

succeed). Similarly, FN measures the total number of students who actually succeed but

the model incorrectly predicts them as failures. With decision trees, the number of FP in

the original dataset Sr is found to be 6 out 130 instances (4.6%) , whereas it is less than

1% (4 / 520) on the simulated dataset Ss . PSP’s decision tree model, when applied to

the simulated and larger dataset Ss achieves much higher values of accuracy and f_score,

as compared to the original dataset, as shown in table 7.2. Both accuracy and f_score

are as high as 96% when class labels are predicted using the simulated dataset Ss with

520 instances as compared to 91% and 89% for dataset Sr with 130 instances. Evidently,

the reason for misclassification in Sr for the minority class (SUCCESS_IN_TASK = no)

is imbalance in distribution of the two class labels (SUCCESS_IN_TASK = yes and

SUCCESS_IN_TASK = no) and too few training instances of the minority class for the

model to learn accurately. Such high values of performance measures such as accuracy

and f_score validate our hypothesis 7.1 that a prediction model can be built with a high

f_score and accuracy by selecting features that have proper knowledge on the assigned

tasks and those that measure student knowledge objectively.
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Predicted
= Yes

Predicted
= no

Actual = Yes 112 (TP) 1 (FN)
Actual = No 6 (FP) 11 (TN)
(a) Confusion matrix generated for dataset Sr

Predicted
= Yes

Predicted
= no

Actual = Yes 245 (TP) 19 (FN)
Actual = No 4 (FP) 252 (TN)
(b) Confusion matrix generated for dataset Ss

Table 7.1: Confusion matrix generated by decision tree model with original dataset Sr

(130 instances) and (original+simulated = 520 instances) dataset Ss

Dataset Sr (size=130) Dataset Ss (size=520)
Accuracy 91 % 96 %
Recall 90 % 96 %

Precision 91 % 96 %
F_Score 89 % 96 %

Table 7.2: Performance measures: Decision tree using datasets Sr and Ss

Figure 7.5 shows a decision tree generated from Ss. As an example, one of the rules

generated by this tree is:

Rule 1:

if the average current grade of a student is > 86%

success = yes

else if the average current grade of a student is > 81%

if average grade in LUs of suggested example 2(SE2) > 49%

success = yes

else if time spent of SE2 < 0.009 (9 minutes)

if average grade in LUs of suggested example 1(SE1) > 68%

success = yes
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else success = no

These rules indicate that if a student s has not performed well in the learning units of

suggested examples and has not spent enough time on them, then s will not be able to

succeed in the task. Even if student s′s current performance is average or above average,

the rules indicate that the student still has to achieve a certain level of grades in the LUs

of the suggested worked-out examples, which yet again asserts the importance of students

using and understanding of the worked-out examples suggested for each task by ERS.

7.5 Chapter 7 overview

The main objective of building the PSP model is to accurately predict student success for

assigned tasks in a fine-grained ITS system by proposing features that are focused on the

task’s resources such as similar worked-out examples suggested by the ITS and student’s

knowledge on these resources. Our proposed method is able to extract meaningful task-

based features and implement them to predict student performance using decision tree

prediction method with accuracy and f_score values as high as 96%. Existing ITS that

predict student performance surveyed in section 7.2 have much lower values of accuracy,

which can be attributed to their improper selection of student and domain model features.

This validates our hypothesis that student performance is predicted with a high value of

accuracy if features used for prediction are well-informed about the assigned tasks and

are measured objectively. The rules generated by decision trees allow us to analyze and

take informed decisions on ERS’s future students.
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Chapter 8

Conclusions, Limitations and

Future Work

This chapter presents a summary of this thesis, its limitations and some future directions.

8.1 Thesis Conclusions

It is an accepted fact that it is not feasible for teachers of traditional classroom teaching to

offer one-on-one tutoring to their students. Programming courses, especially those taught

to beginners, require a lot of resources to enable students learn the subject. An intelligent

tutoring system (ITS) is an answer to these problems by providing a domain model that

manages all ITS resources and a student model that enables personalized tutoring. ERS

is an ITS that uses example-based learning (EBL) to assist students by providing them

with selected worked-out examples focused towards the tasks they are assigned in an

effort to improve their learning. It also helps them prepare for examinations by providing

them with a highly organized repository of worked-out examples. In order to validate

the effectiveness of ERS, a working tutoring system that teaches C programming to

beginners at the University of Windsor was designed and successfully implemented B.1.

An evaluation of ERS as a tutor was conducted on students registered for a course on

Programming in C for beginners in Winter 2015 and Fall 2015 semesters. Results of

this evaluation (chapter 6) indicate that ERS is effective in meeting its prime goal of
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improving learning because students scored significantly higher in those tasks for which

ERS was used.

This section now presents the significant contributions made by this research in con-

text of the research questions described in Chapter 3 (section 3.3) and repeated below.

Research Question RQ1 Is it possible to define simple and efficient knowledge extrac-

tion methods that not only extract the LUs from the domain’s worked-out examples

and task solutions correctly but are also extendable to new domains without the

need of highly trained experts.

The answer to this question is a yes, as demonstrated by this thesis. An ITS that teaches

programming using worked-out examples must be capable of representing these examples

conveniently so that they can be compared and analyzed with other examples and other

related resources such as tasks. This step of extracting knowledge from worked-out exam-

ples and representing them conveniently can be mapped to the data pre-processing step

of a data mining problem. In general, pre-processing is used to transform raw input data

into appropriate formats for subsequent mining (Pang-Ning et al., 2005). The knowledge

extraction module of ERS (chapter 4 section 4.1) develops and implements an algorithm

KERE that extracts learning units (LU) from each worked-out example and task solu-

tion in the domain of ERS using regular expression analysis and transforms them into

vectors of asymmetric binary values, where 1 indicates the presence of a LU. Using regu-

lar expressions mitigates the need for highly trained experts with complex knowledge on

parser and syntax trees (as is required by existing EBL-based ITS). Chapter 5 evaluates

KERE for its efficiency, extendibility to other domains and correctness. For example,

its extendibility is demonstrated by applying it to another domain D2 (Programming in

functional language Miranda). A working website is also developed and implemented to

test this property Appendix B.2).

Research Question RQ2 What impact does a focused and concise list of worked-out

examples have on students performance and learning?

There are two parts to this question (1) generate relevant worked-out examples for an

assigned task (2) validate the impact of using such examples on student learning. One
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of the challenges that students face in online courses is abundance of information, which

includes both relevant and irrelevant information (relevant to the assigned task). The

knowledge customization module of ERS in chapter 4 (4.3) defines an algorithm called

MGREPD that is built to provide students with a list of worked-out examples that consist

of LUs similar to an assigned task. This algorithm applies a data mining algorithm called

k-nn (k nearest neighbors) to generate such a list of examples. The core of k-nn lies in the

similarity function used for comparing worked-out examples and task solutions, which is

dictated by how they are represented. The vector representation of each such example

and task solution by the pre-processing module of ERS enables it to experiment with

several different but appropriate similarity functions such as cosine similarity, Jaccard’s

coefficient and hamming distance. Chapter 5 section 5.3 demonstrates that, for both

domains D1 and D2, using Jaccard’s coefficient generates the closest worked-out examples

for a task in terms of the mining model k-nn’s accuracy and f_score. Existing EBL-based

systems suggest examples independent of the task students are assigned. The onus lies

on the students to fetch for the examples that will help them succeed in a task or test.

To answer the second part of this research question, ERS’s educational impact as a

tutor is validated in chapter 6. Experiments using two different scenarios demonstrate

that students who are required to use ERS and its recommended worked-out examples

before attempting assigned tasks achieve significantly high marks in those tasks. This

answers RQ2 that a focused list of examples has a high impact on student learning.

Research Question RQ3 Can inclusion of global relevance of LUs in a set of worked-

out examples impact cluster formation?

This question is very specific to the data mining problem of clustering and the asnwer is

yes. ERS realizes that its repository of 250 worked-out examples for domain D1 and 101

such examples for domain D2 must be presented to students in a highly organized way so

that students can also use them at times other than attempting tasks (e.g. when prepar-

ing for examinations). ERS maps the problem of organizing its repository of examples

based on their LUs into a data mining problem of clustering binary asymmetric data.

Knowledge organization module of ERS uses standard k-means clustering algorithm with
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significant contribution to computing centroids of binary asymmetric attributes. K-means

typically computes the mode of corresponding binary attributes in a cluster to find its

cluster representatives. This is of concern to ERS data since the LUs are not guaran-

teed to be uniformly distributed among all worked-out examples, and therefore ERS uses

global relevance of LUs when computing cluster representatives. For example, a cluster

with 5 data records and 4 LUs given as [0100, 1011, 1010, 0011, 0011] has 0011 as its

representative (mode of each LU). If the total number of worked-out examples of LU1 in

ERS is just 2 and this cluster has both of them, even then LU1 is not chosen to represent

this cluster. Including such global relevance of LUs by ERS’s modified k-means algorithm

called KOM16 results in a much higher value of Dunn’s internal validity index, indicating

more compact and well-separated clusters. Chapter 5 section 5.4 presents a comparative

analysis of KOM16 with standard k-means. This answers RQ3 that cluster formation

is impacted by considering LUs in a global context. Very few existing EBL-based ITS

organize their examples lesson-wise. KOM16 organizes them based on related LUs.

Research Question RQ4 Is there a way to clearly define and integrate different mod-

ules of an ITS and if so, how?

Answering questions RQ1, RQ2 and RQ3 successfully allows us to establish a framework

that clearly defines and integrates the basic components (knowledge extraction (KE),

organization (KO) and customization (KC)) required by any ITS system. A clear separa-

tion of these components enforces modularity since each component can now be treated

as an independent unit and enables to create a layer of abstraction between the module

that extracts LUs from task solutions and worked-out examples (KE) and other modules

(KC and KO), thereby making ERS domain-independent, once KE is executed.

None of the EBL-based ITS in this thesis’s literature survey are capable of presenting

such a clear and modular framework. This is a significant contribution for the ITS

research community.

Research Question RQ5 How does selection of features from domain and student

models of an ITS impact the accuracy of predicting student performance?
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In this thesis, the proposed ERS is evaluated in many different ways, unlike any of the

existing EBL-based ITS. In addition to evaluating ERS’s individual modules (chapter 5)

and its impact as a tutor (chapter 6), we also evaluate the main features of domain and

student model. In an attempt to answering RQ5, we select or derive specific domain

and student model features that are significant for ERS. These features are validated by

building a decision tree model that predicts student performance using these proposed

features and verifying its accuracy and f_score. Predicting student performance is a

crucial part of every ITS but none of the EBL-based ITS described in chapter 2 2.2.2

focus on this aspect. Chapter 7 describes the process of carefully engineering the proposed

features and applying decision tree analysis to predict student performance with a 96%

accuracy.

8.2 Limitations of ERS

Limitations of algorithms used in modules KE, KC and KO of ERS are listed below.

1. Manual construction of regular expressions (RE) by experts: A novel contribution

of ERS to the ITS community is its knowledge extraction algorithm (KERE). The

domain model for KERE requires ERS experts to provide the regular expressions of

each LU in the domain of ERS. Although the use of regular expressions has many

advantages as highlighted in all previous chapters, a limitation is that experts have

to construct these regular expressions manually.

2. No validation on the correctness of the given input: Regular expressions have a

limitation that do not validate the correctness of the input string - they just identify

patterns in given input strings. For example, KERE will identify LU9 (given as

print type 2 in 3.1) in a given input string s = printf(“%d%d”, i), even though s is

an incorrect statement in C because the number of variables is different than the

number of format specifiers in it. Similarly, an expression given as (a+b)) has an

unbalanced right parenthesis but KERE will not be able to detect any error in it -

it will still identify this expression as LU4 (Arithmetic Expression - Simple). ERS

mitigates this limitation by making a simple assumption that an expert is always
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right! Therefore, ERS It assumes that the task solutions and worked-out examples

provided by experts are always correct and do not need to be validated.

3. ERS’s domain model limitations for domain D1 (C Programming): a valid function

prototype in ERS must have variables in it, although C allows to define function

prototypes without variable names. For example, ERS’s KERE does not identify

LU25 in “int fun (int);”, although it is a valid C syntax.

4. ERS’s domain model limitations for domain D2 (Miranda Programming): there are

2 constraints with the RE are constructed for this domain: (1) an IF statement

must have an OTHERWISE in it for KERE to identify it as LU46. (2) Miranda has

2 different meanings for symbol <, one is the relational operator <, the other is as a

membership operator in list comprehension (<-). KERE extracts LU43 (relational

operator) in every instance that it identifies LU47 (List comprehension).

5. Choice of k in KC and KO components of ERS: Both MGREPD and KOM16 are

sensitive to choice of k.

6. Sensitivity to imbalanced distribution of worked-out examples: Formation of clus-

ters in KOM16 is sensitive to the number of worked-out examples that contain an

LU. For example, ERS currently has 4 worked-out examples with LU26 (function

definition), but it has 33 worked-out examples with LU3 (assignment instruction).

This could impact the allocation of worked-out examples to clusters (e.g. there may

be several clusters representing LU3, whereas LU26 may not be represented by any

cluster).

7. Student model data: a challenge in this research has been student data. The

journey to get students to consent to participate in this research has been over-

overwhelmingly challenging and difficult. Size of the student model is small for

evaluation certain aspects of ERS, although it is worth mentioning that many of

the ITS systems face this challenge (as shown in table 7.12.7.
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8. Controlling external factors: ERS and this thesis did not consider controlling ex-

ternal factors such as a student’s prior knowledge in the domain’s LUs on his/her

performance in the domain.

Despite these limitations, this research has made significant contributions to both the

ITS community as well as the Educational Data Mining community.

8.3 Future Work

There are several directions that this research can lead to, presented broadly as three

different perspectives.

1. Domain Model

(a) Creating new examples from existing ones: ERS’s experts create worked-out

examples and tasks in its repository as and when required. Creating new

examples and tasks from existing ones will reduce the time and efforts required

by ERS’s experts to update their repository.

(b) Rating the examples in an attempt to find the best worked-out example in ERS:

such a rating will assist in recommending relevant and popular examples to

future students. It is worth mentioning here that we did a subjective evaluation

of the examples by asking students about their opinion on the usefulness of

the recommended worked-out examples and the results were 100% positive.

Students found the examples extremely useful.

2. Student model

(a) Creating simulated dataset for students - getting student data to evaluate

an ITS is a very challenging task. The entire ITS community will benefit if

methods to create new data from existing student data can be proposed and

standardized for the ITS researchers.

(b) Creating a benchmark student dataset for ITS built on the teaching method-

ology of Example-based Learning.
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3. Model Improvements

(a) Automating the process of constructing regular expression (RE) for any new

domain. The domain model for KERE, currently requires the experts to pro-

vide the regular expressions of each LU in the domain of ERS.

(b) Evaluating KOM16 using external validity index such as f_score. This can be

done if all worked-out examples are assigned pre-defined classes. For example,

the optimal number of clusters for domain D1 is found to be 6. If existing

worked-out examples in each cluster have pre-defined class labels in advance,

they can be compared with the clusters formed by KOM16 to compute an

f_score value.

(c) Implementing KOM16 in a course setting and compare its benefits in terms of

usability and usefulness to students against lesson-wise organization.

(d) Finding the best value of k for both MGREPD and KOM16 using validity

indices.

(e) Designing algorithms that can index the repository of worked-out examples

for any domain using their metadata such as LUs and difficulty level of these

examples.

(f) Integrating association rule mining and sequential pattern mining (Srikant &

Agrawal, 1996; Ezeife & Yi, 2009) into the framework to discover interesting

relationships from student model data (e.g. students performance) as well as

domain model data (e.g. LUs) and then use these associations to make further

recommendations.

We hope that these contributions, and future directions will inspire researchers in the

Educational Data Mining and Intelligent Tutoring System communities to further improve

upon ITS that are based on Example-Based Learning method of teaching.

150



www.manaraa.com

List of References

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In

Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215 (pp. 487–499). 24

Alchin, M. (2013). Django is python. In Pro Django (pp. 11–40). Springer. 162

Arroyo, I., Walles, R., Beal, C. R., & Woolf, B. P. (2003). Tutoring for sat-math with

wayang outpost. In Advanced Technologies for Mathematics Education Workshop. 1,

40

Bache, K. & Lichman, M. (2013). Uci machine learning repository. 114, 117

Beck, J. & Xiong, X. (2013). Limits to accuracy: how well can we do at student modeling?

In Educational Data Mining 2013.

Brusilovsky, P. (2001). Webex: Learning from examples in a programming course. In In

Proc. of WebNet (pp. 23–27). 41, 42, 43

Brusilovsky, P. & Peylo, C. (2003). Adaptive and intelligent web-based educational sys-

tems. International Journal of Artificial Intelligence in Education, 13(2), 159–172.

2

Burow, R. & Weber, G. (1996). Example explanation in learning environments. In

Intelligent Tutoring Systems, Springer Berlin Heidelberg, (pp. 457–465). 28, 31

Caruana, R. & Niculescu-Mizil, A. (2004). Data mining in metric space: an empirical

analysis of supervised learning performance criteria. In Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining (pp. 69–

78).: ACM.

151



www.manaraa.com

Chai, S., Yang, J., & Cheng, Y. (2007). The research of improved apriori algorithm for

mining association rules. In IEEE International Conference on Service Systems and

Service Management. (pp. 1–4). 26

Chaturvedi, R., Berliane, E., & Ezeife, C. I. (2015a). Ers at

https://ritu100.cs.uwindsor.ca/. xix, 94, 164

Chaturvedi, R., Donais, J., & Ezeife, C. I. (2015b). Ers at

https://ritu106.cs.uwindsor.ca/. xix, 93, 163

Chaturvedi, R. & Ezeife, C. (2014). Mining relevant examples for learning in its stu-

dent models. In 2014 IEEE International Conference on Computer and Information

Technology (pp. 743–750). xv, 9, 70, 72, 73, 75, 108

Chaturvedi, R. & Ezeife, C. (2015a). Mining boolean data using martrix algebra. In IEEE

International Conference on Computer and Information Technology; Ubiquitous Com-

puting and Communications; Dependable, Autonomic and Secure Computing; Pervasive

Intelligence and Computing (CIT/IUCC/DASC/PICOM), Oct. 2015 (pp. 901–906). 9,

12

Chaturvedi, R. & Ezeife, C. I. (2012). Data mining techniques for design of its student

models. In Fifth ACM International Conference on Educational Data Mining-EDM,

June 21 - 23, Chania, Greece. (pp. 232–233). 7, 9

Chaturvedi, R. & Ezeife, C. I. (2013). Mining the impact of course assignments on

student performance. In Sixth ACM International Conference on Educational Data

Mining-EDM, July 6 to 9, Tennessee,USA. (pp. 308–309). 9

Chaturvedi, R. & Ezeife, C. I. (2015b). Task-based example mining for learning in an iin-

telligent tutoring system. Submitted to JEDM (Journal Of Educational Data Mining).

9, 39, 64, 71

Chaturvedi, R., Martinovic, D., & Ezeife, C. I. (2015c). Mining game features to predict

emotions. In The International Conference on Business Tourism and Applied Sciences

ICBTS 2015, Toronto. 9, 112, 117

152



www.manaraa.com

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research, (pp. 321–

357). 135

Chen, P. P. (1976). The entity-relationship model: Toward a unified view of data. ACM

Transactions on Database Systems, 1, 9–36. 65

Chrysafiadi, K. & Virvou, M. (2013). Student modeling approaches: A literature review

for the last decade. Expert Systems with Applications. Article in press. 4

Cox, R. (2007). Regular expression matching can be simple and fast. 91, 103

Domingos, P. (1999). The role of occam’s razor in knowledge discovery. Data mining and

knowledge discovery, 3(4), 409–425. 50

Domingos, P. (2012). A few useful things to know about machine learning. Communica-

tions of the ACM, 55(10), 78–87. 128

Dubé, D. & Feeley, M. (2000). Efficiently building a parse tree from a regular expression.

Acta Informatica, 37(2), 121–144. 103

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of

cybernetics, 4(1), 95–104. 113

Encyclopedia.com (2002). "data mining and sports." computer sciences. 2002. retrieved

march 16, 2016 from encyclopedia.com: http://www.encyclopedia.com/doc/1g2-

3401200511.html. 6

Ezeife, C. (2010). Problem Solving and Programs with C. Nelson Thomson Learning Ltd.

56

Ezeife, C. I. & Yi, L. (2009). Fast incremental mining of web sequential patterns with

plwap tree. Data mining and knowledge discovery, 19.3, 376–416. 150

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of

performance measures for classification. Pattern Recognition Letters, 30(1), 27–38.

153



www.manaraa.com

Friedl, J. (2006). Mastering Regular Expressions. O’Reilly Media. 61

Frost, R. (2015). http://richard.myweb.cs.uwindsor.ca/. 57, 98

Gog, T. & Rummer, N. (2010). Example-based learning: Integrating cognitive and social-

cognitive research perspectives. In Edu. Psych. Rev., 22 (pp. 155–174). 7, 8, 31, 45

Goreva, N., Yudelson, M., & Marshall, B. (2007). Using webex in a web application

programming course. Issues in Information Systems, 8(1-2), 52–57. 121

Greer, J. E. & Mark, M. A. (2016). Evaluation methodologies for intelligent tutoring

systems revisited. International Journal of Artificial Intelligence in Education, 26(1),

387–392. 40

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The weka data mining software: an update. ACM SIGKDD explorations newsletter,

11(1), 10–18. 136

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical

journal, 29(2), 147–160. 71

Han, J. & Kamber, M. (2000). Data Mining: Concepts and Techniques. Morgan Kauf-

mann. 24, 26

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data mining and knowledge discovery,

8(1), 53–87. 24

Hosseini, R. & Brusilovsky, P. (2013). Javaparser: A fine-grain concept indexing tool

for java problems. In The First Workshop on AI-supported Education for Computer

Science (AIEDCS 2013) (pp. 60–63). 8, 30, 35, 36, 42, 43, 46, 49

Hosseini, R. & Brusilovsky, P. (2014). Example-based problem solving support using

concept analysis of programming content. In Intelligent Tutoring Systems (pp. 683–

685).: Springer. 8, 30, 35, 36, 48, 50, 95

154



www.manaraa.com

Hosseini, R., Brusilovsky, P., & Guerra, J. (2013). Knowledge maximizer: Concept-

based adaptive problem sequencing for exam preparation. In Artificial Intelligence in

Education (pp. 848–851).: Springer. 42, 48

Hughes, J. (1989). Why functional programming matters. The computer journal, 32(2),

98–107. 98

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des

Alpes et du Jura. Impr. Corbaz. 10, 71

Jeni, L., Cohn, J. F., De La Torre, F., et al. (2013). Facing imbalanced data–

recommendations for the use of performance metrics. In Affective Computing and

Intelligent Interaction (ACII), 2013 Humaine Association Conference on (pp. 245–

251).: IEEE.

Käser, T., Koedinger, K., & Gross, M. (2014). Different parameters-same prediction: An

analysis of learning curves. In Educational Data Mining 2014.

Li, L. & Chen, G. (2009). A coursework support system for offering challenges and

assistance by analyzing students web portfolios. Educational Technology & Society,

12,2, 205–221. xvii, 8, 29, 33, 34, 35, 40, 41, 42, 43, 46, 48, 98, 125, 129

Li, Q., Wang, H., Yan, Z., & Ma, S. (2001). Efficient mining of association rules by

reducing the number of passes over the database. Journal of Computer Science and

Technology, 16(2), 182–188. 26

Li, T. (2005). A general model for clustering binary data. In Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data mining. ACM,

2005. (pp. 188–197). 80

Loney, K. (2008). Oracle Database 11g The Complete Reference. McGraw-Hill, Inc.

Lukasenko, R. (2012). Development Of Student Model For Support Of Intelligent Tutoring

System Functions. PhD thesis, Faculty of Computer Science and Information Technol-

ogy, Riga Technical University. Summary of Doctoral thesis submitted to Institute of

Applied Computer Systems. 2, 4

155



www.manaraa.com

Mabroukeh, N. (2010). Semantic-based Web Recommendation System. PhD thesis, Uni-

veristy of Windsor, Windsor, Ontario, Canada. 129

Mark, M. A. & Greer, J. E. (1993). Evaluation methodologies for intelligent tutoring

systems. Journal of Artificial Intelligence in Education, 4, 129–129. 40

Markov, Z. & Larose, D. (2007). Data mining the web - Uncovering Patterns in Web

Content, Structure and Usage. John Wiley. 21, 70, 71, 80, 106, 107, 112, 129, 138

Maulik, U. & Bandyopadhyay, S. (2002). Performance evaluation of some clustering

algorithms and validity indices. In Pattern Analysis and Machine Intelligence, IEEE

Transactions on ,, volume 24 (pp. 1650–1654). 113

Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia

learning. Educational psychologist, 38(1), 43–52. 7

McCuaig, J. & Baldwin, J. (2012). : (pp. 160–163).: ERIC. 130

Millan, E., Loboda, T., & Perez-de-la cruz, J. (2010). Bayesian networks for student

model engineering. Computers & Education., 55,4, 1663–1683. 5

Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. (2003). Predicting

student performance: an application of data mining methods with an educational web-

based system. In Frontiers in education, 2003. FIE 2003 33rd annual, volume 1 (pp.

T2A–13).: IEEE. 129

Mokbel, B., Gross, S., Paassen, B., Pinkwart, N., & Hammer, B. (2013). Domain-

independent proximity measures in its. In Sixth ACM International Conference on

Educational Data Mining-EDM 2013, July 6 to 9, 2013, Tennessee,USA (pp. 334–335).

30, 35, 48, 50, 95

Moore, J. L., Dickson-Deane, C., & Galyen, K. (2011). E-learning, online learning,

and distance learning environments: Are they the same? The Internet and Higher

Education, 14(2), 129–135. 1

156



www.manaraa.com

Muldner, K. & Conati, C. (2007). Evaluating a decision-theoretic approach to tailored

example selection. In Proceedings of the 20th international joint conference on Artifical

intelligence., Morgan Kaufmann Publishers Inc. (pp. 483–488). xvii, 29, 36, 38

Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for

predicting academic performance. In Frontiers In Education Conference-Global Engi-

neering: Knowledge Without Borders, Opportunities Without Passports, 2007. FIE’07.

37th Annual (pp. T2G–7).: IEEE.

Ordonez, C. (2003). Clustering binary data streams with k-means. In Proceedings of

the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge

discovery. ACM, 2003. (pp. 12–19). 80

OSBORNE/GAEBLER (1992). Reinventing Government. How to Entrepreneurial Spirit

is Transforming the Public Sector. Addison Wesley.

Pang-Ning, T., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining.

Addison-Wesley. xx, 6, 16, 17, 20, 21, 37, 69, 71, 80, 82, 83, 102, 117, 144

Pardos, Z. A. & Heffernan, N. T. (2010). Modeling individualization in a bayesian net-

works implementation of knowledge tracing. In User Modeling, Adaptation, and Per-

sonalization (pp. 255–266). Springer.

Pardos, Z. A., Heffernan, N. T., Anderson, B., & Heffernan, C. L. (2007). The effect of

model granularity on student performance prediction using bayesian networks. In User

Modeling 2007 (pp. 435–439). Springer. 128

Pardos, Z. A. & Yudelson, M. (2013). Towards moment of learning accuracy. In AIED

Workshops.

Park, J. S., Chen, M.-S., & Yu, P. S. (2005). An effective hash based algorithm for

mining association rules. In ACM SIGMOD International Conference On Management

of Data., volume 24(2) (pp. 175–186). 26

Payam, R., Lei, T., & Huan, L. (2009). Cross-validation. In M. T. Ö. Edited by Ling Liu

(Ed.), Encyclopedia of Database Systems, Springer US. (pp. 532–538). 106, 107, 136

157



www.manaraa.com

Pei, Jian, J. H. B. M.-A. & Zhu., H. (2000). Mining access patterns efficiently from web

logs. In S. B. Heidelberg. (Ed.), Knowledge Discovery and Data Mining. Current Issues

and New Applications. (pp. pp. 396–407).

Pelánek, R. (2015). Metrics for evaluation of student models. Journal of Educational

Data Mining.

Qiu, Y., Qi, Y., Lu, H., Pardos, Z., & Heffernan, N. (2011). Does time matter? modeling

the effect of time with bayesian knowledge tracing. In Educational Data Mining 2011.

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier. 23

Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning.

Cognitive Science, 38(1), 1–37. 7, 8, 31, 45

Romero, C. & Ventura, S. (2010). Educational data mining: a review of the state of the

art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews., 40(6), 601–618. 7, 15

Rovinelli, R. J. & Hambleton, R. K. (1976). On the use of content specialists in assessment

of criterion-referenced test item validity. In Annual Meeting of American Educational

Research Association (60th, SanFrancisco, California). April 19-23. 33, 98

Sarkar, A., Paul, Apurba., a. M. S. K., & Kumar, D. (2012). Modified apriori algorithm

to find out association rules using tree based approach. In IJCA Special Issue on Inter-

national Conference on Computing, Communication and Sensor Network CCSN2012.

(pp. 25–28).: Foundation of Computer Science, New York, USA. 26

Schulze, K. G., Shelby, R. N., Treacy, D. J., Wintersgill, M. C., Vanlehn, K., & Gertner,

A. (2000). Andes: An intelligent tutor for classical physics. Journal of Electronic

Publishing, 6(1). 39

Shen, Y., Chen, Q., Fang, M., Yang, Q., Wu, T., Zheng, L., & Cai, Z. (2010). Predicting

student performance: A solution for the kdd cup 2010 challenge. In Proceedings of

the KDD Cup 2010 Workshop held as part of the 16th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 129

158



www.manaraa.com

Shute, V. J. & Regian, J. (1993). Principles for evaluating intelligent tutoring systems.

Journal of Artificial Intelligence in Education. 39

SOMYUREK, S. (2009). Student modeling: Recognizing the individual needs of users in

e-learning environments. International Journal of Human Sciences, 6,2, 429–450. 5, 7

Srikant, R. & Agrawal, R. (1996). Mining sequential patterns: Generalizations and

performance improvements. In 5th Int’l Conference on Extending Database Technology:

Advances in Database Technology (pp. 3–17). 150

Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010).

Recommender system for predicting student performance. Procedia Computer Science,

1(2), 2811–2819. 129

VanLehn, K. (1998). Analogy events: How examples are used during problem solving.

Cognitive Science, 22.3, 347–388. 31, 45

Vygotsky, L. (1987). Zone of proximal development. Mind in society: The development

of higher psychological processes, 5291. 42

Wang, H. & Xiangwei, L. (2011). The research of improved association rules mining

apriori algorithm. In Eighth International Conference on Fuzzy Systems and Knowledge

Discovery., volume 2 (pp. 961–964). 26

Wang, Y. & Beck, J. (2013). Class vs. student in a bayesian network student model. In

Artificial Intelligence in Education (pp. 151–160).: Springer. 4

Wang, Y. & Heffernan, N. (2013). Extending knowledge tracing to allow partial credit:

Using continuous versus binary nodes. In Artificial Intelligence in Education (pp. 181–

188).: Springer.

Weber, G. & Brusilovsky, P. (2001). Elm-art: An adaptive versatile system for web-based

instruction. International Journal of Artificial Intelligence in Education, 12, 351–384.

28, 31, 35

Windsor, U. o. (2014a). https://blackboard.uwindsor.ca/. 1, 53

159



www.manaraa.com

Windsor, U. o. (2014b). https://clew.uwindsor.ca/. 53, 56

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies

for revolutionizing e-learning. Morgan Kaufmann. 39, 40, 41

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., & Steinberg, D.

(2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14.1,

1–37. 7

Yu, W., Wang, X., Wang, F., Wang, E., & Chen, B. (2008). The research of improved

apriori algorithm for mining association rules. In 11th IEEE International Conference

on Communication Technology. (pp. 513–516). 26

Yudelson, M. & Brusilovsky, P. (2005). Navex: Providing navigation support for adaptive

browsing of annotated code examples. In In Proceedings of 12th International Confer-

ence on Artificial Intelligence in Education, AIED. (pp. 18–22). 8, 28, 32, 35, 36, 40,

41, 42, 43, 46, 48, 50, 64, 90, 95, 125, 128

Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013). Individualized bayesian

knowledge tracing models. In Artificial Intelligence in Education (pp. 171–180).:

Springer.

Zhang, K. & Shasha, D. (1989). Simple fast algorithms for the editing distance between

trees and related problems. SIAM journal on computing, 18(6), 1245–1262. 35

Zhang, Y., Capus, L., & Tourigny, N. (2007). A learner model for learning-by-example

context. In Eighth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing., volume 3 (pp. 778–

785).: IEEE. 29

160



www.manaraa.com

Appendix A

List of Abbreviations

Abbreviation Full

ITS Intelligent Tutoring System

EBL Example-based learning

LU Learning Unit in Domain on C Programming

DM Domain Model

SM Student Model

ERS Example Recommendation System

KE Knowledge Extraction

KC Knowledge Customization

KO Knowledge Organization

KERE Knowledge Extraction using Regular Expressions

SMC Simple Matching Coefficient

GREPD Generate Relevant Examples and Predict Difficulty of a task

MGREPD Modified Generate Relevant Examples and Predict Difficulty of a task

JC Jaccard’s Coefficient

DL Difficulty Level

KOM16 Knowledge Organization modifying steps 1 and 6 of k-means
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Appendix B

Implementation of ERS in

Domain D1 and Domain D2

ERS for Domain D1 (C programming for beginners) successfully extracts LUs from

worked-out examples and task solution given as C code. It has been launched as a

web-driven application to assign tasks and recommend worked-out examples to students

in a course on C programming for beginners, taught at the University of Windsor. ERS

for domain D2 (Miranda) can extract LUs from worked-out examples and task solution

given as Miranda programs, as shown in section B.2.

B.1 Tutoring using ERS in Domain D1 (C Programming

for beginners)

Figure B.1 is an image of the knowledge extraction module implemented for domain D1.

The system is implemented as an HTML web application powered by Python 2.7 and

Django 1.6 (Alchin, 2013). Please note that LUs are shown as concepts (C) in this image

(e.g. C3 in this image corresponds to LU3 in table 3.1). The LUs (details can be found

in 3.1) extracted for this worked-out examples are LU3, LU4, LU6, LU8 and LU11.

162



www.manaraa.com

Figure B.1: Knowledge Extraction module of ERS for domain D1 at
https://ritu106.cs.uwindsor.ca(Chaturvedi et al., 2015b)
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Figure B.2: Knowledge Extraction module of ERS for domain D1 at
https://ritu100.cs.uwindsor.ca(Chaturvedi et al., 2015a)

B.2 Knowledge Extraction in Domain D2 (Programming

in Miranda)

Figure B.2 shows an image of the knowledge extraction module implemented for domain

D2. The system is implemented using Java. Although the image shows just the IF

statement (LU46) being extracted, it extracts other LUs (details found in 3.2) such as

LU48, LU50, LU52, LU53 and LU54.
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